【题目】某闯关游戏规则是:先后掷两枚骰子,将此试验重复n轮,第n轮的点数分别记为xn , yn , 如果点数满足xn< ,则认为第n轮闯关成功,否则进行下一轮投掷,直到闯关成功,游戏结束.
(Ⅰ)求第一轮闯关成功的概率;
(Ⅱ)如果第i轮闯关成功所获的奖金数f(i)=10000× (单位:元),求某人闯关获得奖金不超过1250元的概率;
(Ⅲ)如果游戏只进行到第四轮,第四轮后不论游戏成功与否,都终止游戏,记进行的轮数为随机变量X,求x的分布列和数学期望.
【答案】解:(Ⅰ),当y1=6时,y1< ,因此x1=1,2; 当y1=5时,y1< ,因此x1=1,2;
当y1=4时,y1< ,因此x1=1,2;
当y1=3时,y1< ,因此x1=1;
当y1=2时,y1< 因此x1=1;
当y1=1时,y1< ,因此x1无值;
∴第一轮闯关成功的概率P(A)= .
(Ⅱ)令金数f(i)=10000× ≤1250,则i≥3,
由(Ⅰ)每轮过关的概率为 .
某人闯关获得奖金不超过1250元的概率
:P(i≥3)=1﹣P(i=1)﹣P(i=2)=1﹣ ﹣(1﹣ )× =
(Ⅲ)依题意X的可能取值为1,2,3,4
设游戏第k轮后终止的概率为pk(k=1,2,3,4)
p1= .p2=(1﹣ )× = ,p3=(1﹣ )2× = ,p4=1﹣p2﹣p3= ;
故X的分布列为
X | 1 | 2 | 3 | 4 |
P |
因此EX=1× +2× +3× +4× =
【解析】(Ⅰ)枚举法列出所有满足条件的数对(x1 , y1)即可,(Ⅱ)由10000× ≤1250,得i≥3,由(Ⅰ)每轮过关的概率为 .某人闯关获得奖金不超过1250元的概率:P(i≥3)=1﹣P(i=1)﹣P(i=2)(Ⅲ)设游戏第k轮后终止的概率为pk(k=1,2,3,4),分别求出相应的概率,由能求出X的分布列和数学期望.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线l的参数方程为(t为参数以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为.
Ⅰ判断直线l与圆C的交点个数;
Ⅱ若圆C与直线l交于A,B两点,求线段AB的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图甲所示,放在水平地面上的物体,受到方向不变的水平推力F的作用,F的大小与时间t的关系和物体运动速度v与时间t的关系如图乙所示.下列判断正确的是:
A.t=3s时,物体受到力的合力为零
B.t=6s时,将F撤掉,物体立刻静止
C.2s~4s内物体所受摩擦力逐渐增大
D.t=1s时,物体所受摩擦力是1N
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用数学归纳法证明“能被3整除”的第二步中,时,为了使用假设,应将5k+1-2k+1变形为( ).
A. (5k-2k)+4×5k-2k B. 5(5k-2k)+3×2k
C. (5-2)(5k-2k) D. 2(5k-2k)-3×5k
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“绿水青山就是金山银山”,为了保护环境,减少空气污染,某空气净化器制造厂,决定投入生产某种惠民型的空气净化器.根据以往的生产销售经验得到年生产销售的统计规律如下:①年固定生产成本为2万元;②每生产该型号空气净化器1百台,成本增加1万元;③年生产x百台的销售收入(万元).假定生产的该型号空气净化器都能卖出(利润=销售收入﹣生产成本).
(1)为使该产品的生产不亏本,年产量x应控制在什么范围内?
(2)该产品生产多少台时,可使年利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在平面直角坐标系中,椭圆C的参数方程为 (θ为参数).
(1)以原点为极点,x轴的正半轴为极轴建立极坐标系,求椭圆C的极坐标方程;
(2)设M(x,y)为椭圆C上任意一点,求x+2y的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种商品在天内每件的销售价格(元)与时间()(天)的函数关系满足函数,该商品在天内日销售量(件)与时间()(天)之间满足一次函数关系如下表:
第天 | ||||
件 |
(1)根据表中提供的数据,确定日销售量与时间的一次函数关系式;
(2)求该商品的日销售金额的最大值并指出日销售金额最大的一天是天中的第几天,(日销售金额每件的销售价格日销售量)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】计算机在数据处理时使用的是二进制,例如十进制的1、2、3、4在二进制分别表示为1、10、11、100.下面是某同学设计的将二进制数11111化为十进制数的一个流程图,则判断框内应填入的条件是( )
A.i>4
B.i≤4
C.i>5
D.i≤5
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an},等比数列{bn}满足:a1=b1=1,a2=b2,2a3-b3=1.
(1)求数列{an},{bn}的通项公式;
(2)记cn=anbn,求数列{cn}的前n项和Sn.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com