精英家教网 > 高中数学 > 题目详情
5.已知曲线y=$\frac{{x}^{2}}{4}$-lnx的一条切线的斜率为-$\frac{1}{2}$,则切点的坐标为$({1,\frac{1}{4}})$.

分析 求出原函数的导函数,设出斜率为-$\frac{1}{2}$的切线的切点为(x0,y0),(x0>0)由函数在x=x0时的导数等于-$\frac{1}{2}$求出x0的值,舍掉定义域外的x0得答案.

解答 解:由y=$\frac{{x}^{2}}{4}$-lnx得y′=$\frac{1}{2}x-\frac{1}{x}$.
设斜率为-$\frac{1}{2}$的切线的切点为(x0,y0),(x0>0)
则$\frac{1}{2}{x}_{0}-\frac{1}{{x}_{0}}=-\frac{1}{2}$,
解得:x0=1,
∴y0=$\frac{1}{4}$.
故答案为$({1,\frac{1}{4}})$.

点评 考查了利用导数求曲线上过某点切线方程的斜率,考查了基本初等函数的导数公式,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.直线(m+2)x+my+1=0与直线(m-1)x+(m-4)y+2=0互相垂直,则m 的值为(  )
A.$\frac{1}{2}$B.-2C.-$\frac{1}{2}$或2D.-2或$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.(理)如图在四面体OABC中,OA,OB,OC两两垂直,且OB=OC=3,OA=4,给出如下判断:
①存在点D(O点除外),使得四面体DABC有三个面是直角三角形;
②存在点D,使得点O在四面体DABC外接球的球面上;
③存在唯一的点D使得OD⊥平面ABC;
④存在点D,使得四面体DABC是正棱锥;
⑤存在无数个点D,使得AD与BC垂直且相等.
其中正确命题的序号是①②④⑤(把你认为正确命题的序号填上).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知向量$\overrightarrow a$和$\overrightarrow b$的夹角为60°,且$|{\overrightarrow a}|=1,|{\overrightarrow b}|=2$,
(1)求$|{\overrightarrow{2a}-\overrightarrow b}|$;
(2)若向量$\overrightarrow a+\overrightarrow b$和向量$\overrightarrow a+k\overrightarrow b$垂直,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若x,y满足约束条件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$,则z=2x-y的最小值为(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{1}{3}$ax3-bex(a∈R,b∈R),且f(x)在x=0处的切线与x-y+3=0垂直.
(1)若函数f(x)在[$\frac{1}{2}$,1]存在单调递增区间,求实数a的取值范围;
(2)若f′(x)有两个极值点x1,x2,且x1<x2,求a的取值范围;
(3)在第二问的前提下,证明:-$\frac{e}{2}$<f′(x1)<-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在三棱锥A-BCD中,O、E分别为BD、BC中点,CA=CB=CD=BD=4,AB=AD=2$\sqrt{2}$
(1)求证:AO⊥面BCD
(2)求异面直线AB与CD所成角的余弦值
(3)求点E到平面ACD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知直线l1:y=2x,l2:y=-2x,过点M(-2,0)的直线l分别与直线l1,l2交于A,B,其中点A在第三象限,点B在第二象限,点N(1,0);
(1)若△NAB的面积为16,求直线l的方程;
(2)直线AN交l2于点P,直线BN交l1于点Q,若直线l、PQ的斜率均存在,分别设为k1,k2,判断$\frac{k_1}{k_2}$是否为定值?若为定值,求出该定值;若不为定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设集合A={x|x2-x-2>0},B={x||x|<3},则A∩B=(  )
A.{x|-3<x<-1}B.{x|2<x<3}C.{x|-3<x<-1或2<x<3}D.{x|-3<x<-2或1<x<3}

查看答案和解析>>

同步练习册答案