分析 求出原函数的导函数,设出斜率为-$\frac{1}{2}$的切线的切点为(x0,y0),(x0>0)由函数在x=x0时的导数等于-$\frac{1}{2}$求出x0的值,舍掉定义域外的x0得答案.
解答 解:由y=$\frac{{x}^{2}}{4}$-lnx得y′=$\frac{1}{2}x-\frac{1}{x}$.
设斜率为-$\frac{1}{2}$的切线的切点为(x0,y0),(x0>0)
则$\frac{1}{2}{x}_{0}-\frac{1}{{x}_{0}}=-\frac{1}{2}$,
解得:x0=1,
∴y0=$\frac{1}{4}$.
故答案为$({1,\frac{1}{4}})$.
点评 考查了利用导数求曲线上过某点切线方程的斜率,考查了基本初等函数的导数公式,是中档题.
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | -2 | C. | -$\frac{1}{2}$或2 | D. | -2或$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | -1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {x|-3<x<-1} | B. | {x|2<x<3} | C. | {x|-3<x<-1或2<x<3} | D. | {x|-3<x<-2或1<x<3} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com