精英家教网 > 高中数学 > 题目详情

【题目】已知的展开式中,前三项系数的绝对值依次成等差数列.

(1)求展开式中的常数项;

(2)求展开式中所有整式项.

【答案】(1);(2) x4,-4x3,7x2,-7x,.

【解析】试题分析:(1)求出二项展开式的通项公式,再根据前三项的系数的绝对值依次成等差数列,求出的值,再令通项公式中的幂指数为,求出的值,代入即可求解展开式的常数项;

(2)要使为整式项,需的幂至少为非负数,结合,求出的值,即可得到展开式中的整式项

试题解析:

(1) Tr+1=C·()n-r·()r·(-1)r,

∴前三项系数的绝对值分别为C, C, C,

由题意知C=C+C,n=1+n(n-1),nN*,解得n=8n=1(舍去),

Tk+1=C·()8-k·(-)k=C·(-)k·x4-k,0≤k≤8,

4-k=0k=4,∴展开式中的常数项为T5=C(-)4=.

(2)要使Tk+1为整式项,需4-k为非负数,且0≤k≤8,k=0,1,2,3,4.

∴展开式中的整式项为:x4,-4x3,7x2,-7x,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我校的课外综合实践研究小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到市气象观测站与市博爱医院抄录了16月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:

110

210

310

410

510

610

昼夜温差 (°C)

10

11

13

12

8

6

就诊人数 ()

22

25

29

26

16

12

该综合实践研究小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.

1)若选取的是1月与6月的两组数据,请根据25月份的数据,求出关于的线性回归方程

2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?

参考数据:

.

参考公式:回归直线,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有以下四个命题:

(1)2n2n1(n≥3)

(2)2462nn2n2(n≥1)

(3)n边形内角和为f(n)(n1)π(n≥3)

(4)n边形对角线条数f(n) (n≥4)

其中满足假设nk(kNkn0)时命题成立,则当nk1时命题也成立.但不满足nn0(n0是题中给定的n的初始值)时命题成立的命题序号是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,既为偶函数,又在(0,+∞)上为增函数的是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数x[-1,1],函数,aR的最小值为ha).

(1)求ha)的解析式;

(2)是否存在实数mn同时满足下列两个条件:①m>n>3;②当ha)的定义域为[nm]时,值域为[n2m2]?若存在,求出mn的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最大值与最小值之和为a2+a+1(a>1).

(1)求a的值;

(2)判断函数gx)=fx)-3在[1,2]的零点的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.
(1)求C;
(2)若 的面积为 ,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]
在直线坐标系xOy中,曲线C1的参数方程为 (t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.
(1)说明C1是哪一种曲线,并将C1的方程化为极坐标方程;
(2)直线C3的极坐标方程为θ=α0 , 其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…[4,4.5]分成9组,制成了如图所示的频率分布直方图.
(1)求直方图中的a值;
(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数.说明理由;
(3)估计居民月均用水量的中位数.

查看答案和解析>>

同步练习册答案