【题目】已知点F是拋物线C:y2=2px(p>0)的焦点,点M(x0,1)在C上,且|MF|=.
(1)求p的值;
(2)若直线l经过点Q(3,-1)且与C交于A,B(异于M)两点,证明:直线AM与直线BM的斜率之积为常数.
【答案】(1);(2)
【解析】
(1)抛物线定义知|,则 ,求得x0=2p,代入抛物线方程, ;
(2)由(1)得M(1,1),拋物线C:y2=2x,
当直线l经过点Q(3,-1)且垂直于x轴时,直线AM的斜率 ,直线BM的斜率 , .
当直线l不垂直于x轴时,直线l的方程为y+1=k(x-3),代入抛物线方程,由韦达定理及斜率公式求得 ,即可证明直线AM与直线BM的斜率之积为常数.
(1)由抛物线定义知|MF|=x0+,则x0+=x0,解得x0=2p,
又点M(x0,1)在C上,所以2px0=1,解得x0=1,p=.
(2)由(1)得M(1,1),C:y2=x.
当直线l经过点Q(3,-1)且垂直于x轴时,不妨设A(3,),B(3,-),
则直线AM的斜率kAM=,直线BM的斜率kBM=,所以kAM·kBM=-×=-.
当直线l不垂直于x轴时,设A(x1,y1),B(x2,y2),
则直线AM的斜率kAM===,同理直线BM的斜率kBM=,∴kAM·kBM=·=.
设直线l的斜率为k(显然k≠0且k≠-1),则直线l的方程为y+1=k(x-3).
联立消去x,得ky2-y-3k-1=0,
所以y1+y2=,y1y2=-=-3-,故kAM·kBM===-.
综上,直线AM与直线BM的斜率之积为-.
科目:高中数学 来源: 题型:
【题目】若直线和是异面直线,在平面内,在平面内,是平面与平面的交线,则下列命题正确的是( )
A. 与都不相交 B. 与都相交
C. 至多与中的一条相交 D. 至少与中的一条相交
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】命题:函数的两个零点分别在区间和上;命题:函数有极值.若命题,为真命题的实数的取值集合分别记为,.
(1)求集合,;
(2)若命题“且”为假命题,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)3个不同的小球放入编号为1,2,3,4的4个盒子中,一共有多少种不同的放法?
(2)3个不同的小球放入编号为1,2,3,4的4个盒子中,恰有2个空盒的放法共有多少种?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数的定义域为A,若且时总有,则称为单函数.例如,函数=2x+1()是单函数.下列命题:
①函数(xR)是单函数;
②指数函数(xR)是单函数;
③若为单函数,且,则;
④在定义域上具有单调性的函数一定是单函数.
其中的真命题是_________.(写出所有真命题的编号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱柱中,底面ABCD是等腰梯形,,,,顶点在底面ABCD内的射影恰为点C.
(1)求证:BC⊥平面ACD1;
(2)若直线DD1与底面ABCD所成的角为,求平面与平面ABCD所成锐二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com