精英家教网 > 高中数学 > 题目详情

【题目】已知过抛物线y2=2px(p>0)的焦点,斜率为2 的直线交抛物线于A(x1 , y1)和B(x2 , y2)(x1<x2)两点,且|AB|=9,
(1)求该抛物线的方程;
(2)O为坐标原点,C为抛物线上一点,若 ,求λ的值.

【答案】
(1)解:直线AB的方程是y=2 (x﹣ ),与y2=2px联立,有4x2﹣5px+p2=0,

∴x1+x2=

由抛物线定义得:|AB|=x1+x2+p=9

∴p=4,∴抛物线方程是y2=8x


(2)解:由p=4,4x2﹣5px+p2=0得:x2﹣5x+4=0,

∴x1=1,x2=4,

y1=﹣2 ,y2=4 ,从而A(1,﹣2 ),B(4,4 ).

=(x3,y3)=(1,﹣2 )+λ(4,4 )=(4λ+1,4 λ﹣2

又[2 (2λ﹣1)]2=8(4λ+1),解得:λ=0,或λ=2


【解析】(1)直线AB的方程与y2=2px联立,有4x2﹣5px+p2=0,从而x1+x2= ,再由抛物线定义得:|AB|=x1+x2+p=9,求得p,则抛物线方程可得.(2)由p=4,4x2﹣5px+p2=0求得A(1,﹣2 ),B(4,4 ).再求得设 的坐标,最后代入抛物线方程即可解得λ.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C1 (a>b>0)的一个顶点与抛物线C2:x2=4y的焦点重合,F1、F2分别是椭圆C1的左、右焦点,C1的离心率e= ,过F2的直线l与椭圆C1交于M,N两点,与抛物线C2交于P,Q两点.
(1)求椭圆C1的方程;
(2)当直线l的斜率k=﹣1时,求△PQF1的面积;
(3)在x轴上是否存在点A, 为常数?若存在,求出点A的坐标和这个常数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,等边三角形OAB的边长为8 ,且三个顶点均在抛物线E:y2=2px(p>0)上,O为坐标原点.

(1)证明:A、B两点关于x轴对称;
(2)求抛物线E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率 ,过点A(0,﹣b)和B(a,0)的直线与原点的距离为
(1)求椭圆的方程;
(2)已知定点E(﹣1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点,问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四边形ABCD是正方形,△PAB与△PAD均是以A为直角顶点的等腰直角三角形,点F是PB的中点,点E是边BC上的任意一点.

(1)求证:AF⊥EF;
(2)求二面角A﹣PC﹣B的平面角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 满足| |= =(4,2).
(1)若 ,求 的坐标;
(2)若 与5 +2 垂直,求 的夹角θ的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为2 的正方体ABCD﹣A1B1C1D1中,M是A1B1的中点,点P是侧面CDD1C1上的动点,且MP∥截面AB1C,则线段MP长度的取值范围是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点M(﹣2,0)的直线l与椭圆x2+2y2=2交于P1 , P2 , 线段P1P2的中点为P.设直线l的斜率为k1(k1≠0),直线OP的斜率为k2 , 则k1k2等于(
A.﹣2
B.2
C.
D.﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,θ∈[0,2π)
(1)若函数f(x)是偶函数:①求tanθ的值;②求 的值.
(2)若f(x)在 上是单调函数,求θ的取值范围.

查看答案和解析>>

同步练习册答案