精英家教网 > 高中数学 > 题目详情

【题目】设函数.

1)讨论函数的单调性;

2)如果对所有的≥1,都有,求的取值范围.

【答案】)函数上单调递减,在单调递增;(

【解析】

试题()先对函数求导,再对的取值范围进行讨论,即可得的单调性;()设,先对函数求导,再对的取值范围进行讨论函数的单调性,进而可得的取值范围.

试题解析:(的定义域为2

时,,当时,3

所以函数上单调递减,在单调递增. 5

)法一:设,则

因为≥1,所以7

)当时,,所以单调递减,而,所以对所有的≥1≤0,即

)当时,,若,则单调递增,而,所以当时,,即

)当时,,所以单调递增,而,所以对所有的≥1,即

综上,的取值范围是12

法二:当≥1时, 6

,则7

,则,当≥1时,8

于是上为减函数,从而,因此9

于是上为减函数,所以当有最大值11

,即的取值范围是. 12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系下,已知圆O,直线l)与圆O相交于AB两点,且.

1)求直线l的方程;

2)若点EF分别是圆Ox轴的左、右两个交点,点D满足,点M是圆O上任意一点,点N在线段上,且存在常数使得,求点N到直线l距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】表示自然数n的所有因数中最大的那个奇数,例如:9的因数有1,3,9,,10的因数有1,2,5,10,,那么______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在底面是菱形的四棱锥中,,点EPD上,且

1)证明:平面ABCD

2)求二面角的大小;

3)棱PC上是否存在一点F,使平面AEC?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AB//CD,且.

(1)证明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC ,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,两焦点与短轴的一个端点的连线构成的三角形面积为.

(Ⅰ)求椭圆C的方程;

(Ⅱ)设与圆O相切的直线l交椭圆CAB两点(O为坐标原点),求△AOB面积的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线(a>0,b>0)的左顶点与抛物线y2=2px(p>0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的,且球的表面积也是圆柱表面积的”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积为,则该圆柱的内切球体积为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系x-O-y中,已知曲线E:(t为参数)

(1)在极坐标系O-x中,若A、B、C为E上按逆时针排列的三个点,△ABC为正三角形,其中A点的极角θ=,求B、C两点的极坐标;

(2)在直角坐标系x-O-y中,已知动点P,Q都在曲线E上,对应参数分别为t=α与t=2α (0<α<2π),M为PQ的中点,求 |MO| 的取值范围

查看答案和解析>>

同步练习册答案