精英家教网 > 高中数学 > 题目详情
已知正项数列{an}中,对于一切的n∈N*均有an2≤an-an+1成立.
(1)证明:数列{an}中的任意一项都小于1;
(2)探究an
1n
的大小,并证明你的结论.
分析:(1)根据正项数列{an},以及an2≤an-an+1,可得0<an+1≤an-an2,解此不等式即可证明结论;
(2)根据(1),不难得出a1<1,a2<1,利用数学归纳法证明即可.证明时先证:①当n=1时成立.②再假设n=k(k≥1)时,成立,即ak
1
k
1
2
,再递推到n=k+1时,成立即可.
解答:解:(1)an2≤an-an+1,得an+1≤an-an2
∵在数列{an}中an>0,
∴an+1>0,
∴an-an2>0,
∴0<an<1
故数列{an}中的任意一项都小于1.
(2)由(1)知0<an<1=
1
1

那么a2a1-
a
2
1
=-(a1-
1
2
)2+
1
4
1
4
1
2

由此猜想:an
1
n
(n≥2).下面用数学归纳法证明:
①当n=2时,显然成立;
②当n=k时(k≥2,k∈N)时,假设猜想正确,即ak
1
k
1
2

那么ak+1ak-
a
2
k
=-(ak-
1
2
)2+
1
4
<-(
1
k
-
1
2
)2+
1
4
=
1
k
-
1
k2
=
k-1
k2
k-1
k2-1
=
1
k+1

∴当n=k+1时,猜想也正确
综上所述,对于一切n∈N*,都有an
1
n
点评:本题主要考查数列与不等式问题和数学归纳法,对探究性问题先归纳,再猜想,最后利用数学归纳法证明,数学归纳法的关键是递推环节,要符合假设的模型才能成立,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正项数列{an}满足:a1=3,(2n-1)an+2=(2n+1)an-1+8n2(n>1,n∈N*
(1)求证:数列{
an
2n+1
}
为等差数列,并求数列{an}的通项an
(2)设bn=
1
an
,求数列{bn}的前n项和为Sn,并求Sn的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:称
n
a1+a2+…+an
为n个正数a1,a2,…,an的“均倒数”,已知正项数列{an}的前n项的“均倒数”为
1
2n
,则
lim
n→∞
nan
sn
(  )
A、0
B、1
C、2
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列an中,a1=2,点(
an
an+1)
在函数y=x2+1的图象上,数列bn中,点(bn,Tn)在直线y=-
1
2
x+3
上,其中Tn是数列bn的前项和.(n∈N+).
(1)求数列an的通项公式;
(2)求数列bn的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an}满足a1=1,an+1=an2+2an(n∈N+),令bn=log2(an+1).
(1)求证:数列{bn}为等比数列;
(2)记Tn为数列{
1
log2bn+1log2bn+2
}
的前n项和,是否存在实数a,使得不等式Tn<log0.5(a2-
1
2
a)
对?n∈N+恒成立?若存在,求出实数a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an},Sn=
1
8
(an+2)2

(1)求证:{an}是等差数列;
(2)若bn=
1
2
an-30
,求数列{bn}的前n项和.

查看答案和解析>>

同步练习册答案