精英家教网 > 高中数学 > 题目详情

已知平行四边形ABCD(图1)中,AB=4,BC=5,对角线AC=3,将三角形ACD沿AC折起至PAC位置(图2),使二面角为600,G,H分别是PA,PC的中点.

(1)求证:PC平面BGH;
(2)求平面PAB与平面BGH夹角的余弦值.

(1)详见解析;(2)平面PAB与平面BGH夹角的余弦值

解析试题分析:(1)求证: 平面,证明线面垂直,只需证明线和平面内两条相交直线垂直即可,由于的中位线,,所以,由已知,对角线,得,从而可得,即,即,只需再找一条垂线即可,
问题得证,要证,只要即可,由已知二面角为600,可找二面角的平面角,故过C作,连,则,这样可证得,从而得证;(2)求平面PAB与平面BGH夹角的余弦值,求二面角的大小,可采用向量法来求,以CE的中点O为原点,建立如图所示的空间直角坐标系,由题意可得各点的坐标,分别找出两个平面的法向量,即可求出平面PAB与平面BGH夹角的余弦值.
试题解析:(1)证明:过C作,连BE,PE
,
四边形是矩形,
平面PEC,
是正三角形
平面PEC
=5=BC,
而H是PC的中点,,的中位线,,
,平面BGH.
(2)以CE的中点O为原点,建立如图所示的空间直角坐标系,则,
,,
先求平面PAB的法向量为,而平面BGH的法向量为,
设平面PAB与平面BGH的夹角为,则.

考点:直线与平面垂直的判定;二面角的平面角及求法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在多面体中,四边形是正方形,.

(1)求证:面
(2)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,为正三角形,平面的中点.

(1)求证:平面
(2)求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在几何体中,点在平面ABC内的正投影分别为A,B,C,且,E为中点,

(1)求证;CE∥平面
(2)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知在棱长为2的正方体中,的中点.
(1)求证:
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,平面,底面为直角梯形,,

(1)求证:⊥平面
(2)求异面直线所成角的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,底面为直角梯形,垂直于底面ABCD,PA=AD=AB=2BC=2,M,N分别为PC,PB的中点.

(Ⅰ)求证:PB⊥DM;
(Ⅱ)求点B到平面PAC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,四边形为菱形,,四边形为矩形,若.

(1)求证:
(2)求二面角的余弦值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在四棱锥中,平面是正三角形,的交点恰好是中点,又,点在线段上,且

(1)求证:
(2)求证:平面
(3)求二面角的余弦值.

查看答案和解析>>

同步练习册答案