精英家教网 > 高中数学 > 题目详情
19.下列函数中,既是偶函数,又在区间(0,1)上是增函数的是(  )
A.y=1+$\frac{1}{|x|}$B.y=||x|-1|C.y=($\frac{1}{3}$)-|x|D.y=lg(1-x2

分析 根据函数奇偶性和单调性的定义,逐个考察各选项.

解答 解:根据函数奇偶性和单调性的定义,逐个考察各选项:
A.满足f(-x)=f(x),为偶函数,当x∈((0,1)时,y=1+$\frac{1}{x}$,单调递减,不合题意;
B.满足f(-x)=f(x),为偶函数,当x∈(0,1)时,y=1-x,单调递减,不合题意;
C.满足f(-x)=f(x),为偶函数,当x∈(0,1)时,y=3x,单调递增,符合题意;
D.满足f(-x)=f(x),为偶函数,当x∈(0,1)时,y=lg(1-x2),单调递减,不合题意.
故选C.

点评 本题主要考查了函数奇偶性和单调性的判断,涉及指数函数、对数函数,幂函数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知:向量$\overrightarrow{a}$=(1,$\sqrt{3}$),向量$\overrightarrow{b}$与向量$\overrightarrow{a}$所成的角为$\frac{π}{3}$,且$\overrightarrow{a}$•$\overrightarrow{b}$=4.
(1)求向量$\overrightarrow{b}$;
(2)设$\overrightarrow{m}$=$\overrightarrow{a}$+k$\overrightarrow{b}$,$\overrightarrow{n}$=3k$\overrightarrow{a}$-2$\overrightarrow{b}$(k为正实数),当$\overrightarrow{m}$⊥$\overrightarrow{n}$时,判断$\overrightarrow{m}$+$\overrightarrow{n}$与$\overrightarrow{a}$是否共线,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知点A(-3,5)B(0,3),试在直线y=x+1上找一点P,使|PA|+|PB|最小,并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在约束条件$\left\{\begin{array}{l}{x+y≤8}\\{x+y≥2}\\{y≤\frac{1}{2}x+5}\\{x≥0,y≥0}\end{array}\right.$下,求x=2x-y的最小值与最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列命题
①$\left.\begin{array}{l}{a⊥α}\\{b?α}\end{array}\right\}$⇒a⊥b;②$\left.\begin{array}{l}{a⊥α}\\{a∥b}\end{array}\right\}$⇒b⊥α;
③$\left.\begin{array}{l}{a⊥α}\\{b∥α}\end{array}\right\}$⇒a⊥b;④$\left.\begin{array}{l}{a⊥b}\\{a⊥b}\\{b?α}\\{c?α}\end{array}\right\}$⇒a⊥α;
⑤$\left.\begin{array}{l}{a∥α}\\{a⊥b}\end{array}\right\}$⇒b⊥α;⑥$\left.\begin{array}{l}{a⊥α}\\{b⊥a}\end{array}\right\}$⇒b∥α.
其中正确的命题个数是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x|x-2a|
(1)化简f(x);
(2)试确定a的取值范围,使函数f(x)在区间[2,+∞)上是单调增函数;
(3)在(2)的条件下,求函数f(x)在区间[1,2]上的最大值g(a).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)sinα=$\frac{4}{5}$且α是第二象限角,求tanα的值;
(2)利用(1)中tanα的值求此式值:$\frac{sinα-cosα}{sinα+2cosα}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知全集U={2,3,a2-2a-3},A={b,2},∁UA={5},求:
(1)实数a,b的值;
(2)写出集合A的所有子集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设a,b是实数,命题“?ab>0,都有a>0,b>0”的否定是(  )
A.?ab≤0,使得a≤0,b≤0B.?ab≤0,使得a≤0或b≤0
C.?ab>0,使得a≤0,b≤0D.?ab>0,使得a≤0或b≤0

查看答案和解析>>

同步练习册答案