精英家教网 > 高中数学 > 题目详情

【题目】一汽车厂生产三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):

轿车

轿车

轿车

舒适型

100

150

标准型

300

450

600

按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有类轿车10辆.

(I)求的值;

(II)用分层抽样的方法在类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;

(III)用随机抽样的方法从类舒适型轿车中抽取8辆,经检测它们的得分的值如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把这8辆轿车的得分看成一个总体,从中任取一个数,设样本平均数为,求的概率.

【答案】(I)400;(II);(III)

【解析】试题分析:

(1)由题意结合 分层抽样的概念列方程解得

(2)利用题意列出概率空间的所有事件,由古典概型计算公式可得: ;

(3)首先求得平均数 ,然后求值可得概率值为 .

试题解析:

(I)设该厂这个月共生产轿车辆,由题意得,所以

2000-(100+300)-(150+450)-600=400.

(II)设所抽样本中有辆舒适型轿车,由题意,得

因此抽取的容量为5的样本中,有2辆舒适型轿车,3辆标准型轿车.

表示2辆舒适型轿车,用表示3辆标准型轿车,用表示事件“在该样本中任取2辆,其中至少有1辆舒适型轿车”,则基本事件空间包含的基本事件有: ,共10个.

事件的基本事件有: ,共7个.

,即所求概率为

(III)样本平均数(9.4+8.6+9.2+9.6+8.7+9.3+9.0+8.2)=9.

表示事件“从样本中任取一数,该数与样本平均数之差的绝对值不超过0.5”,则基本事件空间中有8个基本事件,事件包括的基本事件有:9.4,8.6,9.2,8.7,9.3,9.0共6个,所以,即所求概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在半径为的半圆形铁皮上截取一块矩形材料ABCD(点AB在直径上,点CD在半圆周上),并将其卷成一个以AD为母线的圆柱体罐子的侧面(不计剪裁和拼接损耗),

1)若要求圆柱体罐子的侧面积最大,应如何截取?

2)若要求圆柱体罐子的体积最大,应如何截取?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥P﹣ABCD,其三视图和直观图如图所示,E为BC中点. (Ⅰ)求此几何体的体积;
(Ⅱ)求证:平面PAE⊥平面PDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2cosx(sinx﹣cosx)+1,x∈R.
(1)求函数f(x)的单调递增区间;
(2)将函数y=f(x)的图象向左平移 个单位后,再将图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的最大值及取得最大值时的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把函数y=sinx(x∈R)的图象上所有的点的横坐标缩短到原来的 倍(纵坐标不变),再把所得图象向左平行移动 个单位长度,得到的图象所表示的函数是(
A.y=sin( x+ ),x∈R
B.y=sin( x+ ),x∈R
C.y=sin(2x+ ),x∈R
D.y=sin(2x+ ),x∈R

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的极坐标方程是ρ=2,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数).

(1)写出直线l的普通方程与曲线C的直角坐标方程;

(2)设曲线C经过伸缩变换得到曲线,设M(x,y)为上任意一点,求的最小值,并求相应的点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面,底面是直角梯形,

,点上,且.

(1)已知点,且,求证:平面平面

(2)若的面积是梯形面积为,求点E到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|1≤x≤5},B={x|log2x>1}
(1)分别求A∩B,(RB)∪A;
(2)已知集合C={x|2a﹣1≤x≤a+1},若CA,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两点A(2,3)、B(4,1),直线l:x+2y﹣2=0,在直线l上求一点P.
(1)使|PA|+|PB|最小;
(2)使|PA|﹣|PB|最大.

查看答案和解析>>

同步练习册答案