【题目】已知抛物线的焦点为是抛物线上的任意一点.当轴时,的面积为4(为坐标原点).
(1)求抛物线的方程;
(2)若,连接并延长交抛物线于,点关于轴对称,点为直线与轴的交点,且为直角三角形,求点到直线的距离的取值范围.
【答案】(1);(2).
【解析】
(1)由条件有,,则由的面积为4,可得出答案.
(2) ,,则,设直线的方程为,与抛物线方程联立,写出韦达定理,利用三点共线结合韦达定理得出,为直角三角形,所以直线的斜率,所以,得.因为,所以,则点到直线的距离,,然后求其范围即可.
(1)因为为抛物线的焦点,所以,所以.
因为轴,所以,所以.
因为的面积为4,所以,且,所以,
故抛物线的方程为;
(2)设直线的方程为,,,则.
联立,整理得.
因为,所以,.
设,则,.
因为三点共线,所以,
所以.
所以.
因为,,所以.
因为点关于轴对称,所以,
因为为直角三角形,所以,
所以直线的斜率,所以.
由,得.
因为,所以,因为,所以,
则点到直线的距离.
设,则,且,
故
因为在上单调递减,所以.
科目:高中数学 来源: 题型:
【题目】
11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.
(1)求P(X=2);
(2)求事件“X=4且甲获胜”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校医务室欲研究昼夜温差大小与高三患感冒人数多少之间的关系,他们统计了2019年9月至2020年1月每月8号的昼夜温差情况与高三因患感冒而就诊的人数,得到如下资料:
日期 | 2019年9月8日 | 2019年10月8日 | 2019年11月8日 | 2019年12月8日 | 2020年1月8日 |
昼夜温差 | 5 | 8 | 12 | 13 | 16 |
就诊人数 | 10 | 16 | 26 | 30 | 35 |
该医务室确定的研究方案是先从这5组数据中选取2组,用剩下的3组数据求线性回归方程,再用被选取的2组数据进行检验.假设选取的是2019年9月8日与2020年1月8日的2组数据.
(1)求就诊人数关于昼夜温差的线性回归方程 (结果精确到0.01)
(2)若由(1)中所求的线性回归方程得到的估计数据与所选出的检验数据的误差均不超过3人,则认为得到的线性回归方程是理想的,试问该医务室所得线性回归方程是否理想?
参考公式:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图 ,在棱长为 a 的正方体ABCD-A1 B1C1 D1 中,E 、F 分别 是棱 AB 与BC 的中点.
(1)求二 面角 B-FB1-E 的大小;
(2)求点 D 到平面B1EF 的距离;
(3)在棱 DD1 上能否找到一点 M, 使 BM ⊥平面EFB1 ? 若能, 试确定点 M 的位置;若不能, 请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】新高考,取消文理科,实行“”,成绩由语文、数学、外语统一高考成绩和自主选考的3门普通高中学业水平考试等级性考试科目成绩构成.为了解各年龄层对新高考的了解情况,随机调查50人(把年龄在称为中青年,年龄在称为中老年),并把调查结果制成下表:
年龄(岁) | ||||||
频数 | 5 | 15 | 10 | 10 | 5 | 5 |
了解 | 4 | 12 | 6 | 5 | 2 | 1 |
(1)分别估计中青年和中老年对新高考了解的概率;
(2)请根据上表完成下面列联表,是否有95%的把握判断对新高考的了解与年龄(中青年、中老年)有关?
了解新高考 | 不了解新高考 | 总计 | |
中青年 | |||
中老年 | |||
总计 |
附:.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(3)若从年龄在的被调查者中随机选取3人进行调查,记选中的3人中了解新高考的人数为,求的分布列以及.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】空气质量指数AQI是反映空气质量状况的指数,AQI指数值越小,表明空气质量越好,其对应关系如下表:
AQI指数值 | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | >300 |
空气质量 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
下图是某市10月1日—20日AQI指数变化趋势:
下列叙述错误的是
A. 这20天中AQI指数值的中位数略高于100
B. 这20天中的中度污染及以上的天数占
C. 该市10月的前半个月的空气质量越来越好
D. 总体来说,该市10月上旬的空气质量比中旬的空气质量好
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某机构为了解某地区中学生在校月消费情况,随机抽取了100名中学生进行调查.右图是根据调查的结果绘制的学生在校月消费金额的频率分布直方图.已知[350,450),[450,550),[550,650)三个金额段的学生人数成等差数列,将月消费金额不低于550元的学生称为“高消费群” .
(1)求m,n的值,并求这100名学生月消费金额的样本平均数(同一组中的数据用该组区间的中点值作代表);
(2)根据已知条件完成下面2×2列联表,并判断能否有90%的把握认为“高消费群”与性别有关?
高消费群 | 非高消费群 | 合计 | |
男 | |||
女 | 10 | 50 | |
合计 |
(参考公式:,其中)
P() | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com