精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面四边形ABCD中,已知∠A= ,∠B= ,AB=6,在AB边上取点E,使得BE=1,连接EC,ED.若∠CED= ,EC=

(Ⅰ)求sin∠BCE的值;
(Ⅱ)求CD的长.

【答案】解:(Ⅰ)在△CBE中,由正弦定理得 ,sin∠BCE= , (Ⅱ)在△CBE中,由余弦定理得CE2=BE2+CB2﹣2BECBcos120°,即7=1+CB2+CB,解得CB=2.
由余弦定理得CB2=BE2+CE2﹣2BECEcos∠BECcos∠BEC= sin∠BEC=
sin∠AED=sin(1200+∠BEC)= cos∠AED=
在直角△ADE中,AE=5, ═cos∠AED= DE=2
在△CED中,由余弦定理得CD2=CE2+DE2﹣2CEDEcos120°=49
∴CD=7.
【解析】(Ⅰ)在△CBE中,正弦定理求出sin∠BCE;(Ⅱ)在△CBE中,由余弦定理得CE2=BE2+CB2﹣2BECBcos120°,得CB.由余弦定理得CB2=BE2+CE2﹣2BECEcos∠BECcos∠BECsin∠BEC、cos∠AED在直角△ADE中,求得DE=2 ,在△CED中,由余弦定理得CD2=CE2+DE2﹣2CEDEcos120°即可

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某工厂拟生产甲、乙两种实销产品.已知每件甲产品的利润为0.4万元,每件乙产品的利润为0.3万元,两种产品都需要在A,B两种设备上加工,且加工一件甲、乙产品在A,B设备上所需工时(单位:h)分别如表所示.

甲产品所需工时

乙产品所需工时

A设备

2

3

B设备

4

1

若A设备每月的工时限额为400h,B设备每月的工时限额为300h,则该厂每月生产甲、乙两种产品可获得的最大利润为(
A.40万元
B.45万元
C.50万元
D.55万元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知ABC的内角ABC的对边分别为abc,2acosC=bcosC+ccosB

(1)求角C的大小;

(2)若c=a2+b2=10,求ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和Sn满足:Sn=nan﹣2nn﹣1),首项=1.

(1)求数列{an}的通项公式;

(2)设数列的前n项和为Mn,求证: Mn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别为双曲线的左、右顶点,双曲线的实轴长为,焦点到渐近线的距离为

(1)求双曲线的方程;

(2)已知直线与双曲线的右支交于两点,且在双曲线的右支上存在点,使,求的值及点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在平面直角坐标系中,以为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为;直线的参数方程为(t为参数).直线与曲线分别交于两点.

(1)写出曲线的直角坐标方程和直线的普通方程;

(2)若点的极坐标为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sinωx+cosωx(ω>0),x∈R,若函数f(x)在区间(﹣ω,ω)内单调递增,且函数y=f(x)的图象关于直线x=ω对称,则ω的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,四边形是菱形,,且交于点上任意一点.

(1)求证:

(2)若的中点,且二面角的余弦值为,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】泰兴机械厂生产一种木材旋切机械,已知生产总利润c元与生产量x台之间的关系式为c(x)=-2x2+7 000x+600.

(1)求产量为1 000台的总利润与平均利润;

(2)求产量由1 000台提高到1 500台时,总利润的平均改变量;

(3)c′(1 000)c′(1 500),并说明它们的实际意义.

查看答案和解析>>

同步练习册答案