精英家教网 > 高中数学 > 题目详情

【题目】已知关于的不等式有且仅有两个正整数解(其中e=2.71828… 为自然对数的底数),则实数的取值范围是( )

A. ] B. ] C. [ D. [

【答案】D

【解析】

化简不等式可得mex,根据两函数的单调性得出正整数解为1和2,列出不等式组解出即可.

当x0时,由x2﹣mxex﹣mex0,可得mex(x>0),

显然当m0时,不等式mex(x>0),在(0,+∞)恒成立,不符合题意;

当m0时,令f(x)=mex,则f(x)在(0,+∞)上单调递增,

令g(x)=,则g′(x)==>0,

g(x)在(0,+∞)上单调递增,

∵f(0)=m>0,g(0)=0,且f(x)g(x)有两个正整数解,

,即,解得≤m<

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为;直线的参数方程为为参数),直线与曲线分别交于两点.

(1)写出曲线的直角坐标方程和直线的普通方程;

(2)若点的极坐标为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是以为直角顶点的等腰直角三角形,为线段的中点,的中点,分别是以为底边的等边三角形,现将分别沿向上折起(如图),则在翻折的过程中下列结论可能正确的个数为(

1)直线直线;(2)直线直线

3)平面平面;(4)直线直线.

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是第七届国际数学教育大会的会徽,它的主题图案由一连串如图所示的直角三角形演化而成.设其中的第一个直角是等腰三角形,且,则,,现将沿翻折成,则当四面体体积最大时,它的表面有________个直角三角形;当时,四面体外接球的体积为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着网购人数的日益增多,网上的支付方式也呈现一种多样化的状态,越来越多的便捷移动支付方式受到了人们的青睐,更被网友们评为“新四大发明”之一.随着人们消费观念的进步,许多人喜欢用信用卡购物,考虑到这一点,一种“网上的信用卡”横空出世——蚂蚁花呗.这是一款支付宝和蚂蚁金融合作开发的新支付方式,简单便捷,同时也满足了部分网上消费群体在支付宝余额不足时的“赊购”消费需求.为了调查使用蚂蚁花呗“赊购”消费与消费者年龄段的关系,某网站对其注册用户开展抽样调查,在每个年龄段的注册用户中各随机抽取100人,得到各年龄段使用蚂蚁花呗“赊购”的人数百分比如图所示.

1)由大数据可知,在1844岁之间使用花呗“赊购”的人数百分比y与年龄x成线性相关关系,利用统计图表中的数据,以各年龄段的区间中点代表该年龄段的年龄,求所调查群体各年龄段“赊购”人数百分比y与年龄x的线性回归方程(回归直线方程的斜率和截距保留两位有效数字);

2)该网站年龄为20岁的注册用户共有2000人,试估算该网站20岁的注册用户中使用花呗“赊购”的人数;

3)已知该网店中年龄段在18-26岁和27-35岁的注册用户人数相同,现从1835岁之间使用花呗“赊购”的人群中按分层抽样的方法随机抽取8人,再从这8人中简单随机抽取2人调查他们每个月使用花呗消费的额度,求抽取的两人年龄都在1826岁的概率.

参考答案:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(),曲线在点处的切线方程为.

(1)求实数的值,并求的单调区间;

(2)试比较的大小,并说明理由;

(3)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,直角梯形中,EF分别是上的点,且,沿将四边形折起,如图2,使所成的角为60°.

1)求证:平面

2M上的点,,若二面角的余弦值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的三棱锥中,是边长为2的等边三角形,的中位线,为线段的中点.

1)证明:.

2)若二面角为直二面角,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据《环境空气质量指数技术规定(试行)》规定:空气质量指数在区间时,其对应的空气质量状况分别为优、良、轻度污染、中度污染、重度污染、严重污染.如图为某市2019101日至107日的空气质量指数直方图,在这7天内,下列结论正确的是( )

A.4的方差小于后3的方差

B.7天内空气质量状况为严重污染的天数为3

C.7天的平均空气质量状况为良

D.空气质量状况为优或良的概率为

查看答案和解析>>

同步练习册答案