精英家教网 > 高中数学 > 题目详情
已知方程x2+y2-2mx-4y+5m=0的曲线是圆C
(1)求m的取值范围;
(2)当m=-2时,求圆C截直线l:2x-y+1=0所得弦长;
(3)若圆C与直线2x-y+1=0相交于M,N两点,且以MN为直径的圆过坐标原点O,求m的值?
【答案】分析:(1)圆的方程化为标准形式,利用右侧大于0,即可求m的取值范围;
(2)当m=-2时,通过弦心距,半径,半弦长满足勾股定理,求圆C截直线l:2x-y+1=0所得弦长;
( 3)若圆C与直线2x-y+1=0相交于M,N两点,且以MN为直径的圆过坐标原点O,得到,设M(x1,y1),N(x2,y2),推出x1x2+y1y2=0,联立,推出x1x2+y1y2=5x1x2+2(x1+x2)+1=0,求m的值?
解答:解(1)方程x2+y2-2mx-4y+5m=0化为:(x-m)2+(y-2)2=m2-5m+4m2-5m+4
方程表示圆的方程,所以m2-5m+4m2-5m+4>0  
解得:m<1或m>4;
(2)设m=-2,圆心为C(-2,2),半径R=3
圆心到直线的距离为
圆C截直线l:2x-y+1=0所得弦长为:
(3)以MN为直径的圆过坐标原点O,
即OM⊥ON
设M(x1,y1),N(x2,y2),则x1x2+y1y2=0

整理得 5x2-(2m+4)x+5m-3=0,

x1x2+y1y2=5x1x2+2(x1+x2)+1=0,

经检验,此时△=(2m+4)2-20(5m-3)>0

点评:本题考查直线与圆的位置故选,圆的方程的判断,考查函数与方程的思想,转化思想.设而不求的解题方法,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知方程x2+y2-x+4y+m=0.
(1)若此方程表示圆,求的取值范围;
(2)若(1)中的圆的直线x+2y-1=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m;
(3)在(2)得条件下,求以MN为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程x2+y2+kx+2y+k2=0所表示的圆有最大的面积,则直线y=(k+1)x+2的倾斜角α=
π
4
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一个圆.
(1)求实数m的取值范围;
(2)求该圆半径r的取值范围;
(3)求圆心的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程x2+y2+4x-2y-4=0,则x2+y2的最大值是
14+6
5
14+6
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程x2+y2-2mx-4y+5m=0的曲线是圆C
(1)求m的取值范围;
(2)当m=-2时,求圆C截直线l:2x-y+1=0所得弦长;
(3)若圆C与直线2x-y+1=0相交于M,N两点,且以MN为直径的圆过坐标原点O,求m的值?

查看答案和解析>>

同步练习册答案