精英家教网 > 高中数学 > 题目详情

【题目】已知为坐标原点, 是椭圆上的点,且,设动点满足

)求动点的轨迹的方程

若直线与曲线交于两点求三角形面积的最大值

【答案】;(

【解析】试题分析:

()设点 ,结合整理变形可得动点的轨迹的方程为

()联立直线与椭圆方程可得理由弦长公式有 且点到直线的距离据此可得面积函数: 即三角形面积的最大值为

试题解析:

Ⅰ)设点

则由,得

,因为点在椭圆上,

所以

因为

所以动点的轨迹的方程为

Ⅱ)将曲线与直线联立: ,消得:

∵直线与曲线交于两点,设

,又∵,得

∵点到直线的距离

,当时等号成立,满足(*

∴三角形面积的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,以为极点, 轴的正半轴为极轴建立极坐标系,曲线的方程是,将向上平移2个单位得到曲线. 

(1)求曲线的极坐标方程;

(2)直线的参数方程为为参数),判断直线与曲线的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系内,已知点及线段,在线段上任取一点,线段长度的最小值称为“点到线段的距离”,记为.

(1)设点,线段 ,求

(2)设 ,线段,线段,若点满足,求关于的函数解析式,并写出该函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学举行了一次“环保知识竞赛”,全校学生参加了这次竞赛,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100)作为样本进行统计,请根据下面尚未完成并有局部污损的频率分布表(如图所示),解决下列问题.

组别

分组

频数

频率

1

[5060)

8

0.16

2

[6070)

a

3

[7080)

20

0.40

4

[8090)

0.08

5

[90100]

2

b

合计

(1)求出ab的值;

(2)在选取的样本中,从竞赛成绩是80分以上(80)的同学中随机抽取2名同学到广场参加环保知识的志愿宣传活动.

①求所抽取的2名同学中至少有1名同学来自第5组的概率;

②求所抽取的2名同学来自同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点,焦点在轴上,离心率为的椭圆过点

(1)求椭圆的方程;

(2)设椭圆与轴的非负半轴交于点,过点作互相垂直的两条直线,分别交椭圆于两点,连接,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点是圆内的一个定点,点是圆上的任意一点,线段的垂直平分线和半径相交于点,当点在圆上运动时,点的轨迹为曲线.

(1)求曲线的方程;

(2)点 ,直线轴交于点,直线轴交于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角ABC的对边分别为abc,已知2cosCacosB+bcosA=c

)求C;()若c=ABC的面积为,求ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设满足以下两个条件的有穷数列 期待数列

.

)分别写出一个单调递增的阶和期待数列”.

)若某期待数列是等差数列,求该数列的通项公式.

)记期待数列的前项和为,试证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一张纸的长、宽分别为2a2aABCD分别是其四条边的中点,现将其沿图中虚线折起,使得P1P2P3P4四点重合为一点P,从而得到一个多面体,关于该多面体的下列命题,正确的是________(写出所有正确命题的序号).

①该多面体是三棱锥;②平面BAD⊥平面BCD

③平面BAC⊥平面ACD④该多面体外接球的表面积为a2.

查看答案和解析>>

同步练习册答案