精英家教网 > 高中数学 > 题目详情

已知双曲线的两个焦点为F1(-数学公式,0)、F2数学公式,0),M是此双曲线上的一点,且满足数学公式数学公式=0,|数学公式|•|数学公式|=2,则该双曲线的方程是


  1. A.
    数学公式-y2=1
  2. B.
    x2-数学公式=1
  3. C.
    数学公式-数学公式=1
  4. D.
    数学公式-数学公式=1
A
分析:由=0,知MF1⊥MF2,所以(|MF1|-|MF2|)2=|MF1|2-2|MF1|•|MF2|+|MF2|2=40-2×2=36,由此得到a=3,进而得到该双曲线的方程.
解答:∵=0,∴,∴MF1⊥MF2
∴|MF1|2+|MF2|2=40,
∴(|MF1|-|MF2|)2=|MF1|2-2|MF1|•|MF2|+|MF2|2=40-2×2=36,
∴||MF1|-|MF2||=6=2a,a=3,
又c=,∴b2=c2-a2=1,
∴双曲线方程为-y2=1.
故选A.
点评:本题考查双曲线的性质和应用,解题时要注意向量的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线的两个焦点为F1(-
5
,0)、F2
5
,0),P是此双曲线上的一点,且PF1⊥PF2,|PF1|•|PF2|=2,则该双曲线的方程是(  )
A、
x2
2
-
y2
3
=1
B、
x2
3
-
y2
2
=1
C、
x2
4
-y2=1
D、x2-
y2
4
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的两个焦点是椭圆
x2
100
+
y2
64
=1
的两个顶点,双曲线的两条准线经过椭圆的两个焦点,则此双曲线的方程是(  )
A、
x2
60
-
y2
30
=1
B、
x2
50
-
y2
40
=1
C、
x2
60
-
y2
40
=1
D、
x2
50
-
y2
30
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的两个焦点为椭圆
x2
16
+
y2
7
=1
的长轴的端点,其准线过椭圆的焦点,则该双曲线的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的两个焦点为F1(-
5
,0)
F2(
5
,0)
,P是此双曲线上的一点,且PF1⊥PF2,|PF1|•|PF2|=2,求该双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的两个焦点F1(-
10
,0),F2
10
,0),M是此双曲线上的一点,|
MF1
|-|
MF2
|=6,则双曲线的方程为
x2
9
-y2=1
x2
9
-y2=1

查看答案和解析>>

同步练习册答案