精英家教网 > 高中数学 > 题目详情

【题目】袋中有大小、形状相同的红、黑球各一个,现一次有放回地随机摸取3次,每次摸取一个球

I)试问:一共有多少种不同的结果?请列出所有可能的结果;

)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率。

【答案】I)一共有8种不同的结果;

3次摸球所得总分为5的概率为

【解析】

试题分析:(1)由分步计数原理知这个过程一共有8个结果,按照一定的顺序列举出所有的事件,顺序可以是按照红球的个数由多变少变化,这样可以做到不重不漏.

2)本题是一个等可能事件的概率,由前面可知试验发生的所有事件数,而满足条件的事件包含的基本事件为:(红、红、黑)、(红、黑、红)、(黑、红、红),根据古典概型公式得到结果.

解:(I)一共有8种不同的结果,列举如下:

(红、红、红、)、(红、红、黑)、(红、黑、红)、(红、黑、黑)、(黑、红、红)、(黑、红、黑)、(黑、黑、红)、(黑、黑、黑)

)本题是一个等可能事件的概率

“3次摸球所得总分为5”为事件A

事件A包含的基本事件为:(红、红、黑)、(红、黑、红)、(黑、红、红)事件A包含的基本事件数为3

由(I)可知,基本事件总数为8

事件A的概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知奇函数f(x)定义域为(﹣∞,0)∪(0,+∞),f′(x)为其导函数,且满足以下条件①x>0时,f′(x)< ;②f(1)= ;③f(2x)=2f(x),则不等式 <2x2的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某景点拟建一个扇环形状的花坛(如图所示),按设计要求扇环的周长为36米,其中大圆弧所在圆的半径为14米,设小圆弧所在圆的半径为米,圆心角为(弧度).

关于的函数关系式;

已知对花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4/米,弧线部分的装饰费用为16/米,设花坛的面积与装饰总费用之比为,求关于的函数关系式,并求出的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列集合中表示同一集合的是( )

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛掷两枚骰子,求:

(1)点数之和为4的倍数的概率;

(2)点数之和大于5而小于10的概率;

(3)同时抛两枚骰子,求至少有一个5点或者6点的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二项式展开式中各项系数之和比各二项式系数之和大240,

(1)求;(2)求展开式中含项的系数;(3)求展开式中所有含的有理项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】A{x|2x2ax20}B{x|x23x2a0},且AB{2}

(1)a的值及集合AB

(2)设全集UAB,求(UA)(UB)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中an= (n∈N*),将数列{an}中的整数项按原来的顺序组成数列{bn},则b2018的值为(
A.5035
B.5039
C.5043
D.5047

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某科技创新公司在第一年年初购买了一台价值昂贵的设备,该设备的第1年的维护费支出为20万元,从第2年到第6年,每年的维修费增加4万元,从第7年开始,每年维修费为上一年的125%.

(1)求第n年该设备的维修费的表达式;

(2)设,若万元,则该设备继续使用,否则须在第n年对设备更新,求在第几年必须对该设备进行更新?

查看答案和解析>>

同步练习册答案