精英家教网 > 高中数学 > 题目详情
17.设函数f(x)=cos(2x+$\frac{π}{3}$)+sin2x.
(1)求函数f(x)的最小正周期和最大值;
(2)若θ是第二象限角,且f($\frac{θ}{2}$)=0,求$\frac{cos2θ}{1+cos2θ-sin2θ}$的值.

分析 (1)由三角函数中的恒等变换应用化简函数解析式可得f(x)=$\frac{1}{2}-$$\frac{\sqrt{3}}{2}$sin2x,由周期公式可求函数f(x)的最小正周期,利用正弦函数的最值即可得解函数的最大值.
(2)由f($\frac{θ}{2}$)=$\frac{1}{2}-$$\frac{\sqrt{3}}{2}$sinθ=0,解得sinθ=$\frac{\sqrt{3}}{3}$,结合θ范围利用同角三角函数关系式可求cosθ的值,利用倍角公式化简所求后代入即可得解.

解答 解:(1)∵f(x)=cos(2x+$\frac{π}{3}$)+sin2x=$\frac{1}{2}$cos2x-$\frac{\sqrt{3}}{2}$sin2x+$\frac{1-cos2x}{2}$=$\frac{1}{2}-$$\frac{\sqrt{3}}{2}$sin2x,
∴函数f(x)的最小正周期T=$\frac{2π}{2}=π$,f(x)max=$\frac{1}{2}-$$\frac{\sqrt{3}}{2}$sin2xmin=$\frac{1}{2}+\frac{\sqrt{3}}{2}$.
(2)∵θ是第二象限角,且f($\frac{θ}{2}$)=$\frac{1}{2}-$$\frac{\sqrt{3}}{2}$sinθ=0,解得sinθ=$\frac{\sqrt{3}}{3}$,
∴cosθ=-$\sqrt{1-si{n}^{2}θ}$=-$\frac{\sqrt{6}}{3}$,
∴$\frac{cos2θ}{1+cos2θ-sin2θ}$=$\frac{2co{s}^{2}θ-1}{1+(2co{s}^{2}θ-1)-2sinθcosθ}$=$\frac{2×(-\frac{\sqrt{6}}{3})^{2}-1}{2×(-\frac{\sqrt{6}}{3})^{2}-2×\frac{\sqrt{3}}{3}×(-\frac{\sqrt{6}}{3})}$=$\frac{2-\sqrt{2}}{4}$.

点评 本题主要考查了三角函数中的恒等变换应用,正弦函数的图象和性质,考查了学生的计算求解能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.计算:cos10°cos20°cos30°cos40°cos80°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积为2π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设△ABC的外心为O,垂心为H,求证:AH等于点O到边BC距离的2倍.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知P为椭圆$\frac{{x}^{2}}{4}+{y}^{2}=1$上任意一点,F1,F2是椭圆的两个焦点
(1)|PF1|•|PF2|的最大值;
(2)${\left|{P{F_1}}\right|^2}+{\left|{P{F_2}}\right|^2}$的最小值;
(3)求F1PF2的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆中心在原点,焦点在x轴上,过其右焦点F作倾斜角为$\frac{π}{4}$的直线.交椭圆于P,Q两点.若OP⊥OQ,求此椭圆的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1内有一点M(2,3),F1,F2为椭圆左,右焦点,P为椭圆C上的一点,求PM+PF1的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知某人某年1月份至6月份的月经济收入如下:1月份为1000元:从2月份起每月的收人是其上一个月的2倍,用表格、图象、解析式三种形式表示该人1月份至6月份的月经济收人y(元)与月份序号x的函数关系,并指出函数的定义域、值域、对应关系.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某校有17名学生参加某大学组织的夏令营活动.每人至少参加地学、考古、信息科学三科夏令营活动中的一科,已知其中参加地学夏令营活动的有11人,参加考古夏令营活动的有7人,参加信息科学夏令营活动的有9人,同时参加地学和考夏令营活动的有4人,同时参加地学和信息科学夏令营活动的有5人,同时参甲考古和信息科学夏令营活动的有3人,则三科夏令营活动都参加的人数是2.

查看答案和解析>>

同步练习册答案