精英家教网 > 高中数学 > 题目详情
已知点P(x,y)是圆x2+y2+6x-4y+12=0上的一动点,求:
(1)x2+y2的最小值;
(2)点P到直线x-y-1=0的距离的最大值.
考点:直线与圆的位置关系
专题:计算题,直线与圆
分析:(1)设z=x2+y2,利用z的几何意义即可得到结论;
(2)根据点到直线的距离公式即可得到结论.
解答: 解:x2+y2-6x-4y+12=0的标准方程为(x-3)2+(y-2)2=1,圆心为C(3,2),半径r=1,
(1)设z=x2+y2,则z的几何意义为圆上点到原点的距离的平方,原点到圆心的距离d=
32+22
=
13

∴圆上的点到原点的最小距离为
13
-1,
∴x2+y2的最小值为14-2
13

(2)圆心到直线x-y-1=0的距离d=
1
2
<1,
∴直线和圆相交,
∴P到直线x-y-1=0的距离d的最大值
2
2
+1.
点评:本题主要考查直线和圆的位置关系,点与圆的位置关系以及两点间的距离公式,点到直线的距离公式的应用,考查学生的计算能力,数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,若输入的n为10,那么输出的结果是(  )
A、45B、110C、90D、55

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x-1|+|x-a|.
(I)若a=-1,解不等式f(x)≥3;
(II)如果?x∈R,f(x)≥2,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,以坐标原点为极点,x轴非负半轴为极轴建立极坐标系.已知曲线C的参数方程式:
x=4t2
y=4t
(t是参数),直线l的极坐标方程式2pcosθ+psinθ-4=0.
(1)将曲线C的参数方程化为普通方程,将直线l的极坐标方程化为直角坐标方程;
(2)若直线l与曲线C交于A,B,求|AB|

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的对称轴是坐标轴,O为坐标原点,F是一个焦点,A是一个顶点,若椭圆的长轴长是26,cos∠OFA=
5
13
,则椭圆的方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在空间直角坐标系中,点P(3,-2,1)关于x轴的对称点坐标为(  )
A、(3,2,-1)
B、(-3,-2,1)
C、(-3,2,-1)
D、(3,2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

为了解某市心肺疾病是否与性别有关,某医院速记地对入院的50人进行了问卷调查,得到了如下的列联表:
  患心肺疾病 不患心肺疾病 合计
 男  5 
 女 10  
 合计   50
已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为
3
5

(1)请将上面的列联表补充完整;
(2)能否在犯错误的概率不超过0.005的前提下认为患心肺疾病与性别有关?请说明理由;
(3)已知在患心肺疾病的10位女性中,有3位又患胃病,现在从换心肺疾病的10位女性中,选出3名进行排查,记选处患胃病的女性人数为X,求X的分布列和数学期望.
参考数据:
 P(K2≥k0 0.15 0.100.05  0.0250.010  0.0050.001 
 k0 2.0722.706  3.8415.024  6.6357.879  10.828
参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若
sinA
a
=
cosB
b
=
cosC
c
,则△ABC中最长的边是(  )
A、aB、bC、cD、b或c

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
1+sin2x-cos2x
1+sin2x+cos2x

查看答案和解析>>

同步练习册答案