【题目】“垛积术”(隙积术)是由北宋科学家沈括在《梦溪笔谈》中首创,南宋科学家杨辉、元代数学家朱世杰丰富和发展的一类数列求和方法,有菱草垛、方垛、三角垛等等,某仓库中部分货物堆放成“菱草垛”,自上而下,第一层1件,以后每一层比上一层多1件,最后一层是件,已知第一层货物单价1万元,从第二层起,货物的单价是上一层单价的,若这堆货物总价是万元,则的值为________
科目:高中数学 来源: 题型:
【题目】已知两点A(﹣2,0)、B(2,0),动点P满足.
(1)求动点P的轨迹Ω的方程;
(2)若椭圆上点(x0,y0)处的切线方程是:
①过直线l:x=4上一点M引Ω的两条切线,切点分别是P、Q,求证:直线PQ恒过定点N;
②是否存在实数λ,使得|PN|+|QN|=λ|PN||QN|?若存在,求出λ的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,已知曲线的参数方程为(为参数),以原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为:,直线的极坐标方程为.
(Ⅰ)写出曲线的极坐标方程,并指出它是何种曲线;
(Ⅱ)设与曲线交于,两点,与曲线交于,两点,求四边形面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(13分)设{an}是公比为正数的等比数列a1=2,a3=a2+4.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥中,底面 ABCD为矩形,侧面为正三角形,且平面平面 E 为 PD 中点,AD=2.
(1)证明平面AEC丄平面PCD;
(2)若二面角的平面角满足,求四棱锥 的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个结论:
两条直线和同一个平面垂直,则这两条直线平行;
两条直线没有公共点,则这两条直线平行;
两条直线都和第三条直线垂直,则这两条直线平行;
一条直线和一个平面内任意直线没有公共点,则这条直线和这个平面平行.
其中正确的个数为( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )
A. 1盏 B. 3盏 C. 5盏 D. 9盏
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com