(本小题满分12分)
已知点列、、…、(n∈N)顺次为一次函数图像上的点,点列、、…、(n∈N)顺次为x轴正半轴上的点,其中(0<a<1),对于任意n∈N,点、、构成一个顶角的顶点为的等腰三角形。
(1)数列的通项公式,并证明是等差数列;
(2)证明为常数,并求出数列的通项公式;
(3)上述等腰三角形中,是否存在直角三角形?若有,求出此时a值;若不存在,请说明理由。
(1)(nÎN),证明见解析
(2)证明见解析,
(3)存在直角三形,此时a的值为、、.
【解析】(1)(nÎN),∵yn+1-yn=,∴{yn}为等差数列 ………………4分
(2)因为与为等腰三角形.
所以,两式相减得 。………………7分
注:判断得2分,证明得1分
∴x1,x3,x5,…,x2n-1及x2,x4,x6 ,…,x2n都是公差为2的等差数列,………………6分
∴ ………………10分
(3)要使AnBnAn+1为直角三形,则 |AnAn+1|=2=2()Þxn+1-xn=2()
当n为奇数时,xn+1=n+1-a,xn=n+a-1,∴xn+1-xn=2(1-a).
Þ2(1-a)=2() Þa=(n为奇数,0<a<1) (*)
取n=1,得a=,取n=3,得a=,若n≥5,则(*)无解; ………………14分
当偶数时,xn+1=n+a,xn=n-a,∴xn+1-xn=2a.
∴2a=2()Þa=(n为偶数,0<a<1) (*¢),
取n=2,得a=,若n≥4,则(*¢)无解.
综上可知,存在直角三形,此时a的值为、、. ………………18分
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com