精英家教网 > 高中数学 > 题目详情

函数
(1)时,求函数的单调区间;
(2)时,求函数上的最大值.

(1)的减区间为,增区间为.
(2)时,函数上的最大值为.

解析试题分析:(1)首先确定函数的定义域,求导数,然后利用,可得减区间;利用,可得增区间.(2)求函数最值的常用方法是,求导数,求驻点,计算驻点函数值、区间端点函数值,比较大小,得出最值.
试题解析:(1)时,的定义域为
              2分
因为,由,则,则      3分
的减区间为,增区间为                     4分
(2)时,的定义域为
                            5分
,则
,其根判别式
设方程的两个不等实根,                6分

,显然,且,从而                 7分
单调递减                  8分
单调递增                9分
上的最大值为的较大者                    10分
,其中
                                             11分
,则
上是增函数,有            12分
上是增函数,有,            13分

所以时,函数上的最大值为       14分
考点:利用导数研究函数的单调性、最值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知为奇函数,且当时,.当时,的最大值为,最小值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义域为的函数是奇函数.
(1)求的值;
(2)判断函数的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中
(1)对于函数,当时,,求实数的取值集合;
(2)当时,的值为负,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数, .
(1)若, 函数 在其定义域是增函数,求的取值范围;
(2)在(1)的结论下,设函数的最小值;
(3)设函数的图象与函数的图象交于点,过线段的中点轴的垂线分别交于点,问是否存在点,使处的切线与处的切线平行?若存在,求出的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中e为自然对数的底数,且当x>0时恒成立.
(Ⅰ)求的单调区间;
(Ⅱ)求实数a的所有可能取值的集合;
(Ⅲ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,,其中R.
(1)讨论的单调性;
(2)若在其定义域内为增函数,求正实数的取值范围;
(3)设函数,当时,若,总有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,若函数图象上任意一点关于原点的对称点的轨迹恰好是函数的图象.
(1)写出函数的解析式;
(2)当时总有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在点处的切线方程为,且对任意的恒成立.
(Ⅰ)求函数的解析式;
(Ⅱ)求实数的最小值;
(Ⅲ)求证:).

查看答案和解析>>

同步练习册答案