精英家教网 > 高中数学 > 题目详情

【题目】如图1,在中,分别是上的点,且,将沿折起到的位置,使,如图2.

(Ⅰ)求证:平面

(Ⅱ)当长为多少时,异面直线所成的角最小,并求出此时所成角的余弦值.

【答案】)详见解析()当时,异面直线所成的角最小,此时所成角的余弦值为

【解析】

)根据线线垂直线面垂直()利用垂直关系写出函数关系,求函数的最小值,最后结合余弦函数的单调性可求得。

解:()证明:因为平面

平面,所以

平面

(Ⅱ)如图,连结,并设

由(Ⅰ)中平面,所以有,从而在中,

又在中,

显然,当时,

(或是中点)时,线段的长度有最小值,最小值是.

又因为,且,则即为异面直线所成的角,

又在中,.结合余弦函数在锐角范围上是单调递减函数,所以当取最大时,取最小.

综上,当时,异面直线所成的角最小,此时所成角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设定义在上的函数,满足为奇函数,且,则不等式的解集为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中,,以为球心,为半径的球与棱分别交于两点,则二面角的正切值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数,),曲线的参数方程为为参数,且).

(1)以曲线上的点与原点连线的斜率为参数,写出曲线的参数方程;

(2)若曲线的两个交点为,直线与直线的斜率之积为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元1261年所著的《详解九章算法》一书中,记录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于“杨辉三角”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是 ( )

2017 2016 2015 2014……6 5 4 3 2 1

4033 4031 4029…………11 9 7 5 3

8064 8060………………20 16 12 8

16124……………………36 28 20

………………………

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知倾斜角为的直线经过点.以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)写出曲线的普通方程;

(2)若直线与曲线有两个不同的交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司近年来特别注重创新产品的研发,为了研究年研发经费(单位:万元)对年创新产品销售额(单位:十万元)的影响,对近10年的研发经费与年创新产品销售额,10)的数据作了初步处理,得到如图的散点图及一些统计量的值.

其中

现拟定关于的回归方程为

(1)求的值(结果精确到0.1);

(2)根据拟定的回归方程,预测当研发经费为13万元时,年创新产品销售额是多少?

附:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,向量

1)求函数的解析式,并求当时,的单调递增区间;

(2)当时,的最大值为5,求的值;

(3)当时,若不等式上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数学考试中,小明的成绩在90~100分的概率是0.18,在80~89分的概率是0.51,在70~79分的概率是0.15,在60~69分的概率是0.09,在60分以下的概率是0.07,计算;

1)小明在数学考试中取得79分以上成绩的概率;

2)小明考试及格的概率.

查看答案和解析>>

同步练习册答案