精英家教网 > 高中数学 > 题目详情

【题目】△ABC的内角A、B、C所对的边分别为a,b,c. (Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);
(Ⅱ)若a,b,c成等比数列,且c=2a,求cosB的值.

【答案】解:(Ⅰ)∵a,b,c成等差数列, ∴a+c=2b,
由正弦定理得:sinA+sinC=2sinB,
∵sinB=sin[π﹣(A+C)]=sin(A+C),
则sinA+sinC=2sin(A+C);
(Ⅱ)∵a,b,c成等比数列,
∴b2=ac,
将c=2a代入得:b2=2a2 , 即b= a,
∴由余弦定理得:cosB= = =
【解析】(Ⅰ)由a,b,c成等差数列,利用等差数列的性质得到a+c=2b,再利用正弦定理及诱导公式变形即可得证;(Ⅱ)由a,b,c成等比数列,利用等比数列的性质列出关系式,将c=2a代入表示出b,利用余弦定理表示出cosB,将三边长代入即可求出cosB的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,A、B、C的对边分别是a,b,c,且bcosB是acosC,ccosA的等差中项,则角B=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥PABC中,PAABPABCABBCPAABBC=2,D为线段AC的中点,E为线段PC上一点.

(1)求证:PABD

(2)求证:平面BDE平面PAC

(3)PA平面BDE时,求三棱锥EBCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在菱形中,⊥平面,且四边形是平行四边形.

(1)求证:

(2)当点的什么位置时,使得∥平面,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C所对的边分别为a,b,c且acosC﹣ =b.
(1)求角A的大小;
(2)若a=1,求△ABC的周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】A,B两名同学在5次数学考试中的成绩统计如下面的茎叶图所示,若A,B两人的平均成绩分别是xA , xB , 观察茎叶图,下列结论正确的是(
A.xA<xB , B比A成绩稳定
B.xA>xB , B比A成绩稳定
C.xA<xB , A比B成绩稳定
D.xA>xB , A比B成绩稳定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数=().

(Ⅰ)当=-3时,求的极值;

(Ⅱ)当>1时,0,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥E﹣ABCD中,底面ABCD是矩形,AB=1,AE⊥平面CDE, ,F为线段DE上的一点.

(1)求证:平面AED⊥平面ABCD;
(2)若二面角E﹣BC﹣F与二面角F﹣BC﹣D的大小相等,求DF的长.

查看答案和解析>>

同步练习册答案