精英家教网 > 高中数学 > 题目详情
18.如图,二面角α-AB-β的大小为60°,棱上有A,B两点,直线AC、BD分别在这个二面角的两个半平面内,且都垂直于AB,已知AB=4,AC=6,BD=8,则直线AB与CD所成角的余弦值为$\frac{\sqrt{17}}{17}$.

分析 在平面α内过B作BE∥AC,过C作CE∥AB,交BE于点E,连结DE,则∠DCE是直线AB与CD所成角或所成角的补角,由此能求出直线AB与CD所成角的余弦值.

解答 解:在平面α内过B作BE∥AC,过C作CE∥AB,交BE于点E,连结DE,
∵二面角α-AB-β的大小为60°,棱上有A,B两点,
直线AC、BD分别在这个二面角的两个半平面内,
且都垂直于AB,已知AB=4,AC=6,BD=8,
∴四边形ABEC是矩形,CE=AB=4,CE∥AB,
∴∠DCE是直线AB与CD所成角或所成角的补角,
DE=$\sqrt{D{B}^{2}+B{E}^{2}}$=$\sqrt{64+36}$=10,
$\overrightarrow{CD}=\overrightarrow{CA}+\overrightarrow{AB}+\overrightarrow{BD}$,
${\overrightarrow{CD}}^{2}$=($\overrightarrow{CA}+\overrightarrow{AB}+\overrightarrow{BD}$)2=${\overrightarrow{CA}}^{2}+{\overrightarrow{AB}}^{2}+{\overrightarrow{BD}}^{2}$+2$\overrightarrow{CA}•\overrightarrow{AB}$+2$\overrightarrow{CA}•\overrightarrow{BD}$+2$\overrightarrow{AB}•\overrightarrow{BD}$
=36+16+64+2×6×8×cos120°=68,
∴|$\overrightarrow{CD}$|=$\sqrt{68}$=2$\sqrt{17}$,
∴cos∠DCE=$\frac{D{C}^{2}+C{E}^{2}-D{E}^{2}}{2×DC×CE}$=$\frac{68+16-100}{2\sqrt{68}×4}$=-$\frac{\sqrt{17}}{17}$.
∴直线AB与CD所成角的余弦值为$\frac{\sqrt{17}}{17}$.

点评 本题主要考查异面直线所成角的求法,是中档题,解题时要认真审题,考查空间想象能力、运算能力和推理论证能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.关于函数$f(x)=4sin(2x-\frac{π}{3})(x∈R)$,有下列命题:
①$y=f(x+\frac{5π}{12})$为偶函数;
②要得到g(x)=-4sin2x的图象,只需将f(x)的图象向右平移$\frac{π}{3}$个单位;
③y=f(x)的图象关于点$({\frac{π}{6},0})$对称;
④y=f(x)的单调递增区间为$[{2kπ-\frac{π}{12},2kπ+\frac{5π}{12}}](k∈Z)$.
其中正确的序号为①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知等比数列{an}的所有项均为正数,a1=1,且a5=a4+2a3成等差数列.
(1)求数列{an}的通项公式;
(2)数列{an+1-λan}的前n项和为Sn,若Sn=2n-1(n∈N*),求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,四棱锥P-ABCD中,PA⊥底面ABCD,CD=2,底面ABCD为梯形,AB∥DC,AB⊥BC,AB=BC=PA=1,点E在棱PB上,且PE=2EB.
(1)求证:PD∥平面EAC;
(2)求直线PD与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知椭圆与双曲线有公共的左右焦点F1,F2,在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,设椭圆,双曲线的离心率分别为e1,e2,则e2-e1的取值范围是($\frac{2}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=2sin(3x-$\frac{π}{3}$).
(1)若函数y=af(x)-b的最大值为4,最小值为2,求a,b的值;
(2)当x∈[0,$\frac{π}{6}$]时,不等式mf(x)+2m≥f(x)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在△ABC中,BD和CE分别是两边上的中线,且BD⊥CE,BD=6,CE=8,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知点A(1,-$\sqrt{3}$),B(-2,2$\sqrt{3}$).
(1)求方向与AB一致的单位向量;
(2)设向量$\overrightarrow{AC}$与向量$\overrightarrow{AB}$的夹角为60°,且|$\overrightarrow{AC}$|=2,求点C的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若cosx=m,则$\frac{sin\frac{5}{2}x}{2sin\frac{x}{2}}$等于2m2+m-$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案