精英家教网 > 高中数学 > 题目详情

【题目】某生产旅游纪念品的工厂,拟在2017年度进行系列促销活动.经市场调查和测算,该纪念品的年销售量x单位:万件与年促销费用t单位:万元之间满足3-x与t+1成反比例.若不搞促销活动,纪念品的年销售量只有1万件.已知工厂2017年生产纪念品的固定投资为3万元,每生产1万件纪念品另外需要投资32万元.当工厂把每件纪念品的售价定为“年平均每件生产成本的1.5倍”与“年平均每件所占促销费的一半”之和时,则当年的产量和销量相等.利润=收入-生产成本-促销费用

(1)请把该工厂2017年的年利润y单位:万元表示成促销费t单位:万元的函数;

(2)试问:当2017年的促销费投入多少万元时,该工厂的年利润最大?

【答案】(1)(2)

【解析】

试题分析:(1)根据成反比例,当年促销费用为零万元时,年销量是万件,可求出的值,进而通过表示出年利润,并化简整理,代入整理即可求出万元表示为促销费万元的函数;(2)利用基本不等式求出最值,即可得结论.

试题解析:1设反比例系数为kk≠0.由题意有3-x=.

又t=0时x=1,所以3-1=k=2,

则x与t的关系是x=3-t≥0,

依据题意 可知工厂生产x万件纪念品的生产成本为3+32x万元促销费用为t万元

则每件纪念品的定价为元/件

于是进一步化简

y=t≥0.

因此工厂2017年的年利润为y=t≥0.

21y=t≥0=50-≤50-2=42,

当且仅当即t=7时取等号

所以当2017年的促销费用投入7万元时工厂的年利润最大最大利润为42万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

)讨论的单调性;

)若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由无理数引发的数学危机一直延续到19世纪,直到1872年,德国数学家戴德金提出了戴德金分割,才结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集划分为两个非空的子集,且满足中的每一个元素都小于中的每一个元素,则称为戴德金分割.试判断,对于任一戴德金分割,下列选项中不可能成立的是

A.没有最大元素,有一个最小元素

B.没有最大元素,也没有最小元素

C.有一个最大元素,有一个最小元素

D.有一个最大元素,没有最小元素

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一种掷硬币走跳棋的游戏:在棋盘上标有第1站、第2站、第3站、、第100站,共100站,设棋子跳到第站的概率为,一枚棋子开始在第1站,棋手每掷一次硬币,棋子向前跳动一次.若硬币的正面向上,棋子向前跳一站;若硬币的反面向上,棋子向前跳两站,直到棋子跳到第99站(失败)或者第100站(获胜)时,游戏结束.

1)求

2)求证:数列为等比数列;

3)求玩该游戏获胜的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点为,离心率为.

1)求的标准方程;

2)若动点外一点,且的两条切线相互垂直,求的轨迹的方程;

3)设的另一个焦点为,过上一点的切线与(2)所求轨迹交于点,,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为实常数).

1)当时,证明:不是奇函数;

2)设是奇函数,求的值;

3)当是奇函数时,研究是否存在这样的实数集的子集,对任何属于,都有成立?若存在试找出所有这样的;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

1)试讨论函数的单调性;

2)若,试证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,且上存在零点,求实数的取值范围;

2)若对任意,存在使,求实数的取值范围;

3)若存在实数,使得当时,恒成立,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角ABC的对边分别为abc,且2acosB2cb

1)求∠A的大小;

2)若△ABC的外接圆的半径为,面积为,求△ABC的周长.

查看答案和解析>>

同步练习册答案