精英家教网 > 高中数学 > 题目详情
已知P是椭圆
x2
45
+
y2
20
=1
的第三象限内一点,且它与两焦点连线互相垂直,若点P到直线4x-3y-2m+1=0的距离不大于3,则实数m的取值范围是(  )
A.[-7,8]B.[-
9
2
21
2
]
C.[-2,2]D.(-∞,-7]∪[8,+∞)
∵椭圆
x2
45
+
y2
20
=1
的两焦点坐标为(-5,0)(5,0),
且P(x,y)(x<0,y<0)与两焦点连线互相垂直,
y
x+5
y
x-5
=-1
,即y2=25-x2
把y2=25-x2代入
x2
45
+
y2
20
=1,
x2
45
+
25-x2
20
=1

解得x=±3,
∴y2=25-9=16,
y=±4,
∵点P在第三象限,
∴P点坐标是(-3,-4),
P(-3,-4)到4x-3y-2m+1=0的距离d=
|1-2m|
5

∵点P到直线4x-3y-2m+1=0的距离不大于3,
|1-2m|
5
≤3,
-15≤1-2m≤15,
解得-7≤m≤8.
故选A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-1,0),离心率为
2
2

(1)求椭圆的标准方程;
(2)设过点F且不与坐标轴垂直的直线l交椭圆于A,B两点,线段AB的垂直平分线与x轴交于点G,求点G的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,抛物线C1:x2=2py(p>0)的焦点为F,椭圆C2
x2
a2
+
y2
b2
=1
(a>b>0)的离心率e=
3
2
,C1与C2在第一象限的交点为P(
3
1
2

(1)求抛物线C1及椭圆C2的方程;
(2)已知直线l:y=kx+t(k≠0,t>0)与椭圆C2交于不同两点A、B,点M满足
AM
+
BM
=
0
,直线FM的斜率为k1,试证明k•k1
-1
4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知两条抛物线y1=x2+2mx+4,y2=x2+mx-m中至少有一条与x轴有公共点,则实数m的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
1
2
,椭圆的短轴端点与双曲线
y2
2
-x2
=1的焦点重合,过P(4,0)且不垂直于x轴直线l与椭圆C相交于A、B两点.
(Ⅰ)求椭C的方程;
(Ⅱ)求
OA
OB
的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线y=x-2与抛物线y2=4x交于A、B两点,则|AB|的值为(  )
A.2
6
B.4
6
C.2
3
D.4
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,抛物线W的顶点在原点,其焦点F在x轴的正半轴上,过点F作x轴的垂线与W交于A、B两点,且点A在第一象限,|AB|=8,过点B作直线BC与x轴交于点T(t,0)(t>2),与抛物线交于点C.
(1)求抛物线W的标准方程;
(2)若t=6,曲线G:x2+y2-2ax-4y+a2=0与直线BC有公共点,求实数a的取值范围;
(3)若|OB|2+|OC|2≤|BC|2,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在椭圆
x2
16
+
y2
4
=1内,通过点M(1,1),且被这点平分的弦所在的直线方程为(  )
A.x+4y-5=0B.x-4y-5=0C.4x+y-5=0D.4x-y-5=0

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标系中,O为坐标原点,如果一个椭圆经过点P(3,
2
),且以点F(2,0)为它的一个焦点.
(1)求此椭圆的标准方程;
(2)在(1)中求过点F(2,0)的弦AB的中点M的轨迹方程.

查看答案和解析>>

同步练习册答案