精英家教网 > 高中数学 > 题目详情
3.过点A(3,$\sqrt{7}$)与圆O:x2+y2=4相切的两条直线的夹角为(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

分析 利用|OA|=$\sqrt{9+7}$=4,r=2,结合三角函数,即可得出结论.

解答 解:设过点A(3,$\sqrt{7}$)与圆O:x2+y2=4相切的两条直线的夹角为2α,则
∵|OA|=$\sqrt{9+7}$=4,r=2,
∴sinα=$\frac{1}{2}$,$α=\frac{π}{6}$,
∴2α=$\frac{π}{3}$,
故选C.

点评 本题考查直线与圆的位置关系,考查特殊角三角函数的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.方程sin4x=sin2x在$(0,\frac{3}{2}π)$上的解集是$\left\{{\frac{π}{6},\frac{π}{2},π,\frac{5π}{6},\frac{7π}{6}}\right\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若△ABC的内角A,B,C所对的边分别为a,b,c,已知2bsin2A=3asinB,且c=2b,则$\frac{a}{b}$等于(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{3}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x3+ax2-3x-1.
(1)当a=-4时,求函数f(x)的单调递减区间;
(2)已知g(x)=-3x+1,若f(x)与g(x)的图象有三个不同交点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面ACB,AA1=A1C=AC=2$\sqrt{3}$,BC=$\sqrt{3}$,且A1C⊥BC,点E,F分别为AB,A1C1的中点.
(1)求证:BC⊥平面ACA1
(2)求证:EF∥平面BB1C1C;
(3)求四棱锥A1-BB1C1C的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知x,y∈R,满足4≥y≥4-x,x≤2,则$\frac{{x}^{2}+{y}^{2}+4x-2y+5}{xy-x+2y-2}$的最大值为(  )
A.2B.$\frac{13}{6}$C.$\frac{10}{3}$D.$\frac{17}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.等差数列{an}中,S3=$\frac{3}{5}$,S5=$\frac{5}{3}$,则S8=$\frac{64}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知抛物线C:y2=2px(p>0)的焦点为F,直线y=2与y的轴的交点为P,与C的交点为Q,且|QF|=2|PQ|.
(1)求C的方程;
(2)边焦点F的直线l斜率为-1,判断C上是否存在两点M,N,使得M,N关于直线l对称,若存在,求出|MN|,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在三棱锥P-ABC中,AB⊥BC,AB=BC=PA=a,点O、D分别是AC、PC的中点,OP⊥底面ABC.
(1)求证:PA∥平面BOD.
(2)求异面直线PA与BD所成角余弦值的大小.

查看答案和解析>>

同步练习册答案