【题目】在平面四边形(图①)中,与均为直角三角形且有公共斜边,设,∠,∠,将沿折起,构成如图②所示的三棱锥,且使=.
(1)求证:平面⊥平面;
(2)求二面角的余弦值.
【答案】(1)证明见解析;(2)
【解析】
(1)取AB的中点O,连接,证得,从而证得C′O⊥平面ABD,再结合面面垂直的判定定理,即可证得平面⊥平面;
(2)以O为原点,AB,OC所在的直线为y轴,z轴,建立的空间直角坐标系,求得平面和平面的法向量,利用向量的夹角公式,即可求解.
(1)取AB的中点O,连接,,
在Rt△和Rt△ADB中,AB=2,则=DO=1,
又C′D= ,所以,即⊥OD,
又⊥AB,且AB∩OD=O,平面ABD,所以⊥平面ABD,
又C′O平面,所以平面⊥平面DAB
(2)以O为原点,AB,OC所在的直线为y轴,z轴,建立如图所示的空间直角坐标系,
则A(0,-1,0),B(0,1,0),C′(0,0,1), ,
所以,
设平面的法向量为=(),
则, 即,代入坐标得,
令,得,,所以,
设平面的法向量为=(),
则, 即, 代入坐标得,
令,得,,所以,
所以,
所以二面角A-C′D-B的余弦值为.
科目:高中数学 来源: 题型:
【题目】近年来,随着互联网的发展,诸如“滴滴打车”“神州专车”等网约车服务在我国各:城市迅猛发展,为人们出行提供了便利,但也给城市交通管理带来了一些困难.为掌握网约车在省的发展情况,省某调查机构从该省抽取了个城市,分别收集和分析了网约车的两项指标数,数据如下表所示:
城市1 | 城市2 | 城市3 | 城市4 | 城市5 | |
指标数 | |||||
指标数 |
经计算得:
(1)试求与间的相关系数,并利用说明与是否具有较强的线性相关关系(若,则线性相关程度很高,可用线性回归模型拟合);
(2)立关于的回归方程,并预测当指标数为时,指标数的估计值.
附:相关公式:,
参考数据:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在直角坐标系中,曲线的参数方程为(为参数),以为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的普通方程与曲线的直角坐标方程;
(2)曲线与曲线有两个公共点,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图①,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AB=AD=CD=1.现以AD为一边向梯形外作正方形ADEF,然后沿边AD将正方形ADEF翻折,使平面ADEF与平面ABCD垂直,M为ED的中点,如图②.
(1)求证:AM∥平面BEC;
(2)求点D到平面BEC的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,多面体中,面为矩形,面面,.
(1)求证:面面;
(2)已知多面体各顶点均在同一球面上,且该球的表面积为,,当这个多面体的体积取得最大值时求其侧视图的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的倾斜角为,且经过点.以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线,从原点O作射线交于点M,点N为射线OM上的点,满足,记点N的轨迹为曲线C.
(Ⅰ)求出直线的参数方程和曲线C的直角坐标方程;
(Ⅱ)设直线与曲线C交于P,Q两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是国家统计局于2020年1月9日发布的2018年12月到2019年12月全国居民消费价格的涨跌幅情况折线图.(注:同比是指本期与同期作对比;环比是指本期与上期作对比.如:2019年2月与2018年2月相比较称同比,2019年2月与2019年1月相比较称环比)根据该折线图,下列结论错误的是( )
A.2019年12月份,全国居民消费价格环比持平
B.2018年12月至2019年12月全国居民消费价格环比均上涨
C.2018年12月至2019年12月全国居民消费价格同比均上涨
D.2018年11月的全国居民消费价格高于2017年12月的全国居民消费价格
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com