精英家教网 > 高中数学 > 题目详情

【题目】已知

(1)求函数的极值;

(2),对于任意,总有成立,求实数的取值范围.

【答案】(1) 的极小值为: ,极大值为: (2)

【解析】试题分析:(1)先求函数的定义域,然后对函数求导,利用导数求得函数的单调区间,进而求得极值.(2)(1)得到函数的最大值为,则只需.求出函数的导数,分成两类,讨论函数的单调区间和最小值,由此求得的取值范围.

试题解析:

(1)

所以的极小值为: ,极大值为:

(2)(1)可知当时,函数的最大值为

对于任意,总有成立,等价于恒成立,

时,因为,所以,即上单调递增, 恒成立,符合题意.

②当时,设

所以上单调递增,且,则存在,使得

所以上单调递减,在上单调递增,又

所以不恒成立,不合题意.

综合①②可知,所求实数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司计划购买1台机器,该种机器使用三年后即被淘汰.在购进机器时,可以一次性额外购买几次维修服务,每次维修服务费用200元,另外实际维修一次还需向维修人员支付小费,小费每次50元.在机器使用期间,如果维修次数超过购机时购买的维修服务次数,则每维修一次需支付维修服务费用500元,无需支付小费.现需决策在购买机器时应同时一次性购买几次维修服务,为此搜集并整理了100台这种机器在三年使用期内的维修次数,得下面统计表:

维修次数

8

9

10

11

12

频数

10

20

30

30

10

以这100台机器维修次数的频率代替1台机器维修次数发生的概率, 记表示1台机器三年内共需维修的次数,表示购买1台机器的同时购买的维修次数.

(1)求的分布列;

(2)若要求,确定的最小值;

(3)以在维修上所需费用的期望值为决策依据,在之中选其一,应选用哪个?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为响应绿色出行,某市在推出“共享单车”后,又推出“新能源租赁汽车”.每次租车收费的标准由两部分组成:里程计费:1元/公里;时间计费:元/分.已知陈先生的家离上班公司公里,每天上、下班租用该款汽车各一次.一次路上开车所用的时间记为(分),现统计了50次路上开车所用时间,在各时间段内频数分布情况如下表所示

将各时间段发生的频率视为概率,一次路上开车所用的时间视为用车时间,范围为分.

(1)估计陈先生一次租用新能源租赁汽车所用的时间不低于分钟的概率;

(2)若公司每月发放元的交通补助费用,请估计是否足够让陈先生一个月上下班租用新能源租赁汽车(每月按天计算),并说明理由.(同一时段,用该区间的中点值作代表)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角所对的边分别为,当角取最大值时,的周长为,则__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高中志愿者部有男志愿者6人,女志愿者4人,这些人要参加元旦联欢会的服务工作. 从这些人中随机抽取4人负责舞台服务工作,另外6人负责会场服务工作.

(Ⅰ)设为事件:“负责会场服务工作的志愿者中包含女志愿者但不包含男志愿者”,求事件发生的概率.

(Ⅱ)设表示参加舞台服务工作的女志愿者人数,求随机变量的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为提升教师专业功底,引领青年教师成长,某市教育局举行了全市“园丁杯”课堂教学比赛,在这次比赛中,通过采用录像课评比的片区预赛,有共10位选手脱颖而出进入全市决赛.决赛采用现场上课形式,从学科评委库中采用随机抽样抽选代号1,2,3,…,7的7名评委,规则是:选手上完课,评委们当初评分,并从7位评委评分中去掉一个最高分,去掉一个最低分,根据剩余5位评委的评分,算出平均分作为该选手的最终得分.记评委对某选手评分排名与该选手最终排名的差的绝对值为“评委对这位选手的分数排名偏差”.排名规则:由高到低依次排名,如果选手分数一样,认定名次并列(如:选手分数一致排在第二,则认为他们同属第二名,没有第三名,接下来分数为第四名).七位评委评分情况如下表所示:

(1)根据最终评分表,填充如下表格:

(2)试借助评委评分分析表,根据评委对各选手的排名偏差的平方和,判断评委4与评委5在这次活动中谁评判更准确.

____号评委评分分析表

选手

A

B

C

D

E

F

G

H

I

J

最终排名

评分排名

排名偏差

(3)从这10位选手中任意选出3位,记其中评委4比评委5对选手排名偏差小的选手数位,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】朱世杰是历史上最伟大的数学家之一,他所著的四元玉鉴卷中如像招数五问有如下问题:今有官司差夫一千八百六十四人筑堤只云初日差六十四人,次日转多七人,每人日支米三升,共支米四百三石九斗二升,问筑堤几日其大意为:官府陆续派遣人前往修筑堤坝,第一天派出人,从第二天开始,每天派出的人数比前一天多人,修筑堤坝的每人每天分发大米升,共发出大米升,问修筑堤坝多少天这个问题中,前天一共应发大米____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】表示中的最大值.已知函数

(1)设求函数上零点的个数

(2)试探讨是否存在实数使得恒成立若存在的取值范围若不存在说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥中, 是边长为的等边三角形, 分别是的中点.

(1)求证: 平面

(2)求证: 平面

(3)求三棱锥的体积.

查看答案和解析>>

同步练习册答案