【题目】为节约生活用水,某市计划试行居民生活用水定额管理,为了较为合理地确定出居民月均用水量标准,通过抽样获得了100位居民某年的月均用水量(单位:),并制作了频率分布直方图.
(1)由于某种原因频率分布直方图部分数据丢失,请在图中将其补充完整,并说明理由;
(2)从频率分布直方图中估计该100位居民月均用水量的众数,中位数.
科目:高中数学 来源: 题型:
【题目】某机构为了了解不同年龄的人对一款智能家电的评价,随机选取了50名购买该家电的消费者,让他们根据实际使用体验进行评分.
(Ⅰ)设消费者的年龄为,对该款智能家电的评分为.若根据统计数据,用最小二乘法得到关于的线性回归方程为,且年龄的方差为,评分的方差为.求与的相关系数,并据此判断对该款智能家电的评分与年龄的相关性强弱.
(Ⅱ)按照一定的标准,将50名消费者的年龄划分为“青年”和“中老年”,评分划分为“好评”和“差评”,整理得到如下数据,请判断是否有的把握认为对该智能家电的评价与年龄有关.
好评 | 差评 | |
青年 | 8 | 16 |
中老年 | 20 | 6 |
附:线性回归直线的斜率;相关系数,独立性检验中的,其中.
临界值表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校命制了一套调查问卷(试卷满分均为100分),并对整个学校的学生进行了测试.现从这些学生的成绩中随机抽取了50名学生的成绩,按照分成5组,制成了如图所示的频率分布直方图(假定每名学生的成绩均不低于50分).
(1)求频率分布直方图中x的值,并估计所抽取的50名学生成绩的平均数、中位数(同一组中的数据用该组区间的中点值代表);
(2)用样本估计总体,若该校共有2000名学生,试估计该校这次测试成绩不低于70分的人数;
(3)若利用分层抽样的方法从样本中成绩不低于70分的学生中抽取6人,再从这6人中随机抽取3人,试求成绩在的学生至少有1人被抽到的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:的离心率,椭圆C上的点到其左焦点的最大距离为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点A作直线与椭圆相交于点B,则轴上是否存在点P,使得线段,且?若存在,求出点P坐标;否则请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列满足(,且),且,设,,数列满足.
(1)求证:数列是等比数列并求出数列的通项公式;
(2)求数列的前n项和;
(3)对于任意,,恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一所学校计划举办“国学”系列讲座.由于条件限制,按男、女生比例采用分层抽样的方法,从某班选出10人参加活动.在活动前对所选的10名同学进行了国学素养测试,这10名同学的性别和测试成绩(百分制)的茎叶图如图.
(1)根据这10名同学的测试成绩,估计该班男、女生国学素养测试的平均成绩;
(2)若成绩大于等于75分为优良,从这10名同学中随机选取2名男生,2名女生,求这4名同学的国学素养测试成绩均为优良的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】棋盘上标有第0、1、2...100站,棋子开始位于第0站,棋手抛掷均匀硬币走跳棋游戏,若掷出正面,棋子向前跳出一站;若掷出反面,棋子向前跳出两站,直到跳到第99站或第100站时,游戏结束.设棋子位于第n站的概率为,设.则下列结论正确的有( )
①;;
②数列()是公比为的等比数列;
③;
④.
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线的参数方程是(是参数),以坐标原点为原点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)判断直线与曲线的位置关系;
(2)过直线上的点作曲线的切线,求切线长的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com