精英家教网 > 高中数学 > 题目详情

【题目】汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是(
A.消耗1升汽油,乙车最多可行驶5千米
B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多
C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油
D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油

【答案】D
【解析】解:对于选项A,从图中可以看出当乙车的行驶速度大于40千米每小时时的燃油效率大于5千米每升,故乙车消耗1升汽油的行驶路程远大于5千米,故A错误;

对于选项B,以相同速度行驶相同路程,三辆车中,甲车消耗汽油最小,故B错误,

对于选项C,甲车以80千米/小时的速度行驶1小时,里程为80千米,燃油效率为10,故消耗8升汽油,故C错误,

对于选项D,因为在速度低于80千米/小时,丙的燃油效率高于乙的燃油效率,故D正确.

根据汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,以及图象,分别判断各个选项即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知 为不同的直线, 不同的平面,则下列判断正确的是()

A. ,则 B. ,则

C. ,则 D. ,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)用“五点法”在如图所示的虚线方框内作出函数在一个周期内的简图(要求:列表与描点,建立直角坐标系);

(2)函数的图像可以通过函数的图像经过“先伸缩后平移”的规则变换而得到,请写出一个这样的变换!

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx﹣x2+1. (Ⅰ)若曲线y=f(x)在x=1处的切线方程为4x﹣y+b=0,求实数a和b的值;
(Ⅱ)讨论函数f(x)的单调性;
(Ⅲ)若a<0,且对任意x1 , x2∈(0,+∞),x1≠x2 , 都有|f(x1)﹣f(x2)|>|x1﹣x2|,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数==

(1)求函数的单调递增区间;(只需写出结论即可)

(2)设函数= ,若在区间上有两个不同的零点,求实数的取值范围;

(3)若存在实数,使得对于任意的,都有成立,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos(x)cos(x),g(x)=sin 2x.

(1)求函数f(x)的最小正周期;

(2)求函数h(x)=f(x)-g(x)的最大值,并求使h(x)取得最大值的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,AB=AD=DE= CD=2,M是线段AE上的动点.
(Ⅰ)试确定点M的位置,使AC∥平面MDF,并说明理由;
(Ⅱ)在(Ⅰ)的条件下,求平面MDF将几何体ADE﹣BCF分成的两部分的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

(Ⅰ)当时,解不等式

(Ⅱ)若关于的方程的解集中恰有一个元素,求的取值范围;

(Ⅲ)设,若对任意,函数在区间上的最大值与最小值的和不大于,求的取值范围.

查看答案和解析>>

同步练习册答案