精英家教网 > 高中数学 > 题目详情
14.抛物线x=4y2的焦点坐标是  (  )
A.($\frac{1}{16}$,0)B.(1,0)C.(0,$\frac{1}{16}$)D.(0,1 )

分析 化简抛物线方程为标准方程,然后求解即可.

解答 解:抛物线x=4y2的标准方程为:y2=$\frac{1}{4}$x它的焦点坐标是($\frac{1}{16}$,0).
故选:A.

点评 本题考查抛物线的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知等差数列{an}中,a4=14,前10项和S10=185.
(1)求数列{an}的通项公式an
(2)设{bn}是首项为1,公比为2的等比数列,求数列{an+bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在直角坐标标系xoy中,已知曲线${C_1}:\left\{{\begin{array}{l}{x=1+cosα}\\{y={{sin}^2}α-\frac{9}{4}}\end{array}}\right.$(α为参数,α∈R),在以原点O为极点,x轴非负半轴为极轴的极坐标系中(取相同的长度单位),曲线${C_2}:ρsin(θ+\frac{π}{4})$=$-\frac{{\sqrt{2}}}{2}$,曲线C3:ρ=2cosθ.
(Ⅰ)求曲线C1与C2的交点M的直角坐标;
(Ⅱ)设A,B分别为曲线C2,C3上的动点,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知不等式$\frac{{{2^x}+1}}{3}>1-\frac{{{2^x}-1}}{2}$的解集为M,则下列说法正确的是(  )
A.{0}⊆MB.M=∅C.-1∈MD.2∈M

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=sinx•cosx+{sin^2}x-\frac{1}{2}$.
(1)求函数f(x)的最小正周期以及单调递增区间;
(2)将函数y=f(x)的图象上各点的纵坐标保持不变,横坐标缩短到原来的$\frac{1}{2}$,把所得图象向左平移$\frac{π}{4}$个单位,得到函数y=g(x)的图象,求函数y=g(x)在$(-\frac{π}{4},0)$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,△PAB的顶点A、B为定点,P为动点,其内切圆O1与AB、PA、PB分别相切于点C、E、F,且$AB=2\sqrt{3}$,||AC|-|BC||=2.
(1)求||PA|-|PB||的值;
(2)建立适当的平面直角坐标系,求动点P的轨迹W的方程;
(3)设l是既不与AB平行也不与AB垂直的直线,线段AB的中点O到直线l的距离为 $\sqrt{2}$,直线l与曲线W相交于不同的两点G、H,点M满足$2\overrightarrow{OM}=\overrightarrow{OG}+\overrightarrow{OH}$,证明:$2|\overrightarrow{OM}|=|\overrightarrow{GH}|$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数$y=\sqrt{{{log}_2}(x-3)}$的定义域是(  )
A.(3,+∞)B.(3,4]C.(4,+∞)D.[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设F1,F2是椭圆$\frac{x^2}{a^2}+\frac{y^2}{25}=1(a<5)$的两个焦点,且|F1F2|=8,弦AB过点F2,则△ABF1的周长为(  )
A.12B.20C.2$\sqrt{41}$D.4$\sqrt{41}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x2-1)=logm$\frac{x^2}{{2-{x^2}}}$.
(1)求f(x)的解析式并判断f(x)的奇偶性;
(2)解关于 x的不等式 f(x)≤0.

查看答案和解析>>

同步练习册答案