【题目】以双曲线 (a>0,b>0)上一点M为圆心的圆与x轴恰相切于双曲线的一个焦点F,且与y轴交于P、Q两点.若△MPQ为正三角形,则该双曲线的离心率为( )
A.4
B.
C.
D.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=a(x+ )+blnx(其中a,b∈R)
(Ⅰ)当b=﹣4时,若f(x)在其定义域内为单调函数,求a的取值范围;
(Ⅱ)当a=﹣1时,是否存在实数b,使得当x∈[e,e2]时,不等式f(x)>0恒成立,如果存在,求b的取值范围,如果不存在,说明理由(其中e是自然对数的底数,e=2.71828…).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系 中,已知椭圆 的离心率为 ,C为椭圆上位于第一象限内的一点.
(1)若点 的坐标为 ,求a,b的值;
(2)设A为椭圆的左顶点,B为椭圆上一点,且 ,求直线AB的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于下列四个命题
p1:x0∈(0,+∞),( )x0<( )x0
p2:x0∈(0,1), x0> x0
p3:x∈(0,+∞),( )x> x
p4:x∈(0, ),( )x< x.
其中的真命题是( )
A.p1 , p3
B.p1 , p4
C.p2 , p3
D.p2 , p4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}中, 的对称轴为 .
(1)试证明{2nan}是等差数列,并求{an}的通项公式;
(2)设{an}的前n项和为Sn , 求Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 .
(1)函数f(x)在区间(0,+∞)上是增函数还是减函数?证明你的结论;
(2)当x>0时, 恒成立,求整数k的最大值;
(3)试证明:(1+12)(1+23)(1+34)…(1+n(n+1))>e2n﹣3 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知a(sinA﹣sinB)=(c﹣b)(sinC+sinB) (Ⅰ)求角C;
(Ⅱ)若c= ,△ABC的面积为 ,求△ABC的周长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤ ),其图象与直线y=﹣1相邻两个交点的距离为π,若f(x)>1对x∈(﹣ , )恒成立,则φ的取值范围是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=sinxcosx﹣sin2(x﹣ ). (Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数f(x﹣ )在[0, ]上的最大值与最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com