精英家教网 > 高中数学 > 题目详情
9.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与双曲线C2有共同的左右焦点F1、F2,两曲线的离心率之积e1•e2=1,D是两曲线在第一象限的交点,F1D与y轴交于点E,则EF2的长为$\frac{2{a}^{2}-{b}^{2}}{2a}$.(用a、b表示).

分析 设椭圆与双曲线:$\frac{{x}^{2}}{{A}^{2}}-\frac{{Y}^{2}}{{B}^{2}}=1$(A>0,B>0)的半焦距为c,PF1=m,PF2=n,利用椭圆、双曲线的定义,结合e1•e2=1可得aA=c2,即DF2垂直于x轴,EF2=$\frac{1}{2}D{F}_{1}$.

解答 解:设双曲线:$\frac{{x}^{2}}{{A}^{2}}-\frac{{Y}^{2}}{{B}^{2}}=1$(A>0,B>0),
椭圆与双曲线的半焦距为c,PF1=m,PF2=n.∴m+n=2a,m-n=2A.
∵e1e2=1,∵$\frac{c}{a}•\frac{c}{A}=1$.⇒m2=n2+4c2⇒DF2垂直于x轴
⇒D(c,$\frac{{b}^{2}}{a}$)⇒DF1=2a-$\frac{{b}^{2}}{a}$,∵E为DF1的中点,∴EF2=$\frac{1}{2}D{F}_{1}$=$\frac{2{a}^{2}-{b}^{2}}{2a}$.
故答案为:$\frac{2{a}^{2}-{b}^{2}}{2a}$.

点评 本题考查了椭圆与双曲线的离心率问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知cos(α+$\frac{π}{4}$)=$\frac{7\sqrt{2}}{10}$,cos2α=$\frac{7}{25}$,则sinα+cosα等于(  )
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.-$\frac{1}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如果对定义在R上的函数f(x),对任意两个不相等的实数x1,x2都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),则称函数f(x)“H函数”.下列函数是“H函数”的所有序号为①③.
①y=ex+x;②y=x2;③y=3x-sinx;④$\left\{\begin{array}{l}ln|x|,x≠0\\ 0,x=0\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某高校青年志愿者协会,组织大一学生开展一次爱心包裹劝募活动,将派出的志愿者,分成甲、乙两个小组,分别在两个不同的场地进行劝募,每个小组各6人,爱心人士每捐购一个爱心包裹,志愿者就将送出一个钥匙扣作为纪念,茎叶图记录了这两个小组成员某天劝募包裹时送出钥匙扣的个数,且图中乙组的一个数据模糊不清,用x表示,已知甲组送出钥匙扣的平均数比乙组的平均数少一个.
(1)求图中x的值;
(2)在乙组的数据中任取两个,写出所有的基本事件并求两数据都大于甲组增均数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知命题p:已知函数f(x)的定义域为R,若f(x)是奇函数,则f(0)=0,则它的原命题,逆命题、否命题、逆命题中,真命题的个数为(  )
A.0B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,正方体ABCD-A1B1C1D1中,E、F,M分别是AB,AM,AA1的中点,P,Q分别是A1B1,A1D1上的动点(不与A1重合),且A1P=A1Q.
(1)求证:EF∥平面MPQ;
(2)当平面MPQ与平面EFM所成二面角为直二面角时,求二面角E-MP-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.程序框图如图所示,若输入值t∈(0,3),则输出值S的取值范围是(  )
A.(0,4)B.(0,4]C.[0,9]D.(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=$\sqrt{2-x}$+lg(x+1)的定义域为(  )
A.[-1,2]B.[-1,2)C.(-1,2]D.(-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.公理一:如果一条直线l上的两点A,B在一个平面α内,那么这条直线l在此平面内.请用数学的符号语言表示为A∈l,B∈l,A∈α,B∈α⇒l?α.

查看答案和解析>>

同步练习册答案