精英家教网 > 高中数学 > 题目详情
已知向量u=(x,y),v=(y,2y-x)的对应关系用v=?f(u)?表示.

(1)证明对于任意向量a、b及常数m、n恒有f(ma+nb)=mf(a)+nf(b)成立;

(2)设a=(1,1),b=(1,0),求向量f(a)及f(b)的坐标;

(3)求使f(c)=(p,q),(p、q∈R,且p、q为常数)的向量c的坐标.

(1)证明:设a=(x1,y1),b=(x2,y2),?则ma+nb=(mx1+nx2,my1+ny2),∴f(ma+nb)=(my1+ny2,2my1+2ny2-mx1-nx2). 而mf(a)+nf(b)=m(y1,2y1-x1)+n(y2,2y2-x2) =(my1+ny2,2my1-mx1+2ny2-nx2).?显然有f(ma+nb)=nf(a)+nf(b). (2)解:∵a=(1,1),b=(1,0),?∴f(a)=(1,2-1)=(1,1),f(b)=(0,2×0-1)=(0,-1).(3)解:设c=(x,y),则f(c)=(y,2y-x)=(p,q).?∴ 解得?∴c=(2p-q,p).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
u
=(x,y)
与向量
v
=(y,2y-x)
的对应关系可用
v
=f(
u
)
表示.
(1)设
a
=(1,1),
b
=(1,0)
,求向量f(
a
)及f(
b
)
的坐标;
(2)证明:对于任意向量
a
b
及常数m、n,恒有f(m
a
+n
b
)=mf(
a
)+nf(
b
)
成立;
(3)求使f(
c
)=(3,5)
成立的向量
c

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
u
=(x,y)
v
=(y,2y-x)
的对应关系用
v
=f(
u
)
表示.
(Ⅰ)设
a
=(1,1),
b
=(1,0)
,求向量f(
a
)
f(
b
)
的坐标;
(Ⅱ)求使f(
c
)=(p,q)
,(p,q为常数)的向量
c
的坐标;
(Ⅲ)证明:对于任意向量
a
b
及常数m,n恒有f(m
a
+n
b
)=mf(
a
)+nf(
b
)
成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量u=(x,y)与向量v=(y,2y-x)的对应关系用v=f(u)表示.

(1)证明对于任意向量ab及常数mn,恒有f(ma+nb)=mf(a)+nf(b)成立;

(2)设a=(1,1),b=(1,0),求向量f(a)及f(b)的坐标;

(3)求使f(c)=(p,q)(p,q为常数)的向量c的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量u=(x,y)与向量v=(y,2y-x)的对应关系用v=f(u)表示.

(1)证明对于任意向量a、b及常数m、n,恒有f(ma+nb)=mf(a)+nf(b)成立;

(2)设a=(1,1),b=(1,0),求向量f(a)及f(b)的坐标;

(3)求使f(c)=(p、q)(p、q为常数)的向量c的坐标.

查看答案和解析>>

同步练习册答案