精英家教网 > 高中数学 > 题目详情
已知ABCD是矩形,边长AB=3,BC=4,正方形ACEF边长为5,平面ACEF⊥平面ABCD,则多面体ABCDEF的外接球的表面积 (   )
A.B.C.D.
B

试题分析:解:由题意作出图形:

分别连接矩形ABCD和正方形ACEF的对角线,分别相较于点O1、O,由球的截面圆的性质可知:球心必在过O1与平面ABCD垂直的直线上和在过点O且平面ACEF垂直的直线上,因此球心必为二直线 的交点即点O.(也可以证明得O到所有顶点的距离都相等).∴球的半径为R==,∴多面体ABCDEF的外接球的表面积S=4π×( )2=50π.故答案为B
点评:熟练掌握球的截面圆的性质是解题的关键
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

三棱锥及其三视图中的主视图和左视图如图9所示,则棱的长为_________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

关于直线a,b,c以及平面M,N,给出下面命题: 
①若a//M,b//M, 则a//b                ②若a//M, b⊥M,则b⊥a
③若aM,bM,且c⊥a,c⊥b,则c⊥M   ④若a⊥M, a//N,则M⊥N
其中正确的命题是
A.①②B.②③C.②④D.①④

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,,平面底面.分别是的中点,求证:

(Ⅰ)底面
(Ⅱ)平面
(Ⅲ)平面平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是空间三条不同的直线,是空间中不同的平面,则下列命题中不正确的是(   )
A.若,则
B.若,则
C.当内的射影,若,则
D.当时,若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,平面⊥平面,四边形是直角梯形,分别为的中点.

(Ⅰ) 用几何法证明:平面
(Ⅱ)用几何法证明:平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥中,是正三角形,的交点恰好是中点,又,点在线段上,且

(1)求证:
(2)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是三条不同的直线,是三个不同的平面,给出以下命题:
①若,则; ②若,则;③若,则;④若,则
其中正确命题的序号是(   )   
A.②④B.②③C.③④D.①③

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在棱长为2的正方体中,点E,F分别是棱AB,BC的中点,则点到平面的距离等于( )
A.B.C.D.

查看答案和解析>>

同步练习册答案