精英家教网 > 高中数学 > 题目详情

【题目】使用支付宝和微信支付已经成为广大消费者最主要的消费支付方式,某超市通过统计发现一周内超市每天的净利润(万元)与每天使用支付宝和微信支付的人数(千人)具有线性相关关系,并得到最近一周的7组数据如下表,并依此作为决策依据.

(1)作出散点图,并求出回归方程(精确到);

(2)超市为了刺激周一消费,拟在周一开展使用支付宝和微信支付随机抽奖活动,总奖金7万元.根据市场调查,抽奖活动能使使用支付宝和微信支付消费人数增加7千人,试决策超市是否有必要开

展抽奖活动?

(3)超市管理层决定:从周一到周日,若第二天的净利润比前一天增长超过两成,则对全体员工进行奖励,在(Ⅱ)的决策下,求全体员工连续两天获得奖励的概率.

参考数据: .

参考公式:.

【答案】(1);(2)见解析;(3)

【解析】

(1)通过表格描点即可,先计算,然后通过公式计算出线性回归方程;

2)先计算活动开展后使用支付宝和微信支付的人数为(千人),代入(1)问得到结果;

3)先判断周一到周日全体员工只有周二、周三、周四、周日获得奖励,从而确定基本事件,再找出连续两天获得奖励的基本事件,故可计算出全体员工连续两天获得奖励的概率.

(1)散点图如图所示

关于的回归方程为

(2)活动开展后使用支付宝和微信支付的人数为(千人)

由(1)得,当时,

此时超市的净利润约为,故超市有必要开展抽奖活动

(3)由于

故从周一到周日全体员工只有周二、周三、周四、周日获得奖励

从周一到周日中连续两天,基本事件为(周一、周二),(周二、周三),(周三、周四),(周四、周五),(周五、周六),(周六、周日),共6个基本事件

连续两天获得奖励的基本事件为(周二、周三),(周三、周四),共2个基本事件

故全体员工连续两天获得奖励的概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《史记》卷六十五《孙子吴起列传第五》中有这样一道题:齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,齐王获胜的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某企业生产的某种产品中抽取件,测量这些产品的一项质量指标值,由测量结果得如频率分布直方图:

(1)求这件产品质量指标值的样本平均数和样本方差(同一组中的数据用该组区间的中点值作代表);

(2)由直方图可以认为,这种产品的质量指标值服从正态分布,其中近似为样本平均数近似为样本方差.

①利用该正态分布,求

②某用户从该企业购买了件这种产品,记表示这件产品中质量指标值位于区间的产品件数.利用①的结果,求.

附:.若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】观察下列等式:

按此规律,第个等式可为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x﹣alnx+
(Ⅰ)若a>1,求函数f(x)的单调区间;
(Ⅱ)若a>3,函数g(x)=a2x2+3,若存在x1 , x2∈[ ,2],使得|f(x1)﹣g(x2)|<9成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程:为参数),曲线的参数方程:为参数),且直线交曲线两点.

(Ⅰ)将曲线的参数方程化为普通方程,并求时,的长度;

(Ⅱ) 已知点,求当直线倾斜角变化时,的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是函数的部分图象.

1)求函数的表达式;

2)若函数满足方程,求在内的所有实数根之和;

3)把函数的图象的周期扩大为原来的两倍,然后向右平移个单位,再把纵坐标伸长为原来的两倍,最后向上平移一个单位得到函数的图象.若对任意的,方程在区间上至多有一个解,求正数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在城市旧城改造中,某小区为了升级居住环境,拟在小区的闲置地中规划一个面积为的矩形区域(如图所示),按规划要求:在矩形内的四周安排宽的绿化,绿化造价为200元/,中间区域地面硬化以方便后期放置各类健身器材,硬化造价为100元/.设矩形的长为.

(1)设总造价(元)表示为长度的函数;

(2)当取何值时,总造价最低,并求出最低总造价.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为圆上一动点,圆心关于轴的对称点为,点分别是线段上的点,且.

(1)求点的轨迹方程;

(2)直线与点的轨迹只有一个公共点,且点在第二象限,过坐标原点且与垂直的直线与圆相交于两点,求面积的取值范围.

查看答案和解析>>

同步练习册答案