精英家教网 > 高中数学 > 题目详情
20.用反证法证明命题“若a2+b2=0,则a,b全为0 (a,b为实数)”,其反设为a,b不全为0.

分析 把要证的结论否定之后,即得所求的反设.

解答 解:用反证法证明命题的真假,先假设命题的结论不成立,
所以用反证法证明命题“若a2+b2=0,则a,b全为0 (a,b为实数)”,其反设为a,b不全为0,
故答案为:a,b不全为0.

点评 解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,不需要一一否定,只需否定其一即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=x3+ax2+bx在x=1和x=-$\frac{2}{3}$都取得极值.
(1)求a、b的值;
(2)当x∈[-1,2]时,求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在直角坐标平面xOy内已知定点F(1,0),动点P在y轴上运动,过点P作PM交x轴于点M,使得$\overrightarrow{PM}$•$\overrightarrow{PF}$=0,延长MP到点N,使得|$\overrightarrow{PM}$|=|$\overrightarrow{PN}$|
(1)当|$\overrightarrow{OP}$|=1时,求$\overrightarrow{FM}$•$\overrightarrow{FN}$;
(2)求点N的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设正方体的所有棱长都为a,顶点都在一个球面上,则该球的表面积为(  )
A.πa2B.2πa2C.3πa2D.12πa2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.不等式-x2-x+2<0的解集为(  )
A.{x|x<-2或 x>1 }B.{x|-2<x<1 }C.{x|x<-1 或x>2 }D.{x|-1<x<2 }

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图4,已知正三棱柱ABC-A1B1C1,延长BC至D,使C为BD的中点.
(1)求证:平面AC1D⊥平面AA1B;
(2)若AC=2,AA1=4,求二面角C1-AD-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在斜三棱柱ABC-A1B1C1中,侧面ACC1A1与侧面CBB1C1都是菱形,∠ACC1=∠CC1B1=60°,AC=2.
(1)求证:AB1⊥CC1
(2)若$A{B_1}=\sqrt{6}$,求二面角C-AB1-A1的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在四棱锥P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=4,AB=4$\sqrt{3}$,∠CDA=120°,点N在线段PB上,且PN=2.
(1)求证:BD⊥PC;
(2)求证:MN∥平面PDC;
(3)求二面角A-PC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥P-ABCD中,底面ABCD是正方形,AD=PD=2,PA=2$\sqrt{2}$,∠PDC=120°,点E为线段PC的中点,点F在线段AB上.
(Ⅰ)若AF=$\frac{1}{2}$,求证:CD⊥EF;
(Ⅱ)设平面DEF与平面DPA所成二面角的平面角为θ,试确定点F的位置,使得cosθ=$\frac{{\sqrt{3}}}{4}$.

查看答案和解析>>

同步练习册答案