精英家教网 > 高中数学 > 题目详情

【题目】己知椭圆的离心率为分别是椭圈的左、右焦点,椭圆的焦点到双曲线渐近线的距离为.

(1)求椭圆的方程;

(2)直线与椭圆交于两点,以线段为直径的圆经过点,且原点到直线的距离为,求直线的方程.

【答案】(1);(2).

【解析】

1)利用焦点到双曲线渐近线距离为可求得;根据离心率可求得;由求得后即可得到所求方程;(2)由原点到直线距离可得;将直线方程与椭圆方程联立,整理得到韦达定理的形式;根据圆的性质可知,由向量坐标运算可整理得,从而构造出方程组,结合求得结果.

1)由题意知,

双曲线方程知,其渐近线方程为:

焦点到双曲线渐近线距离:,解得:

由椭圆离心率得:

椭圆的方程为:

2)原点到直线距离为:,整理得:

得:

,即:

为直径的圆过点

即:

得:,满足

直线方程为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆)的离心率为,且经过点.

(1)求椭圆的方程;

(2)过点作直线与椭圆交于不同的两点,试问在轴上是否存在定点使得直线与直线恰关于轴对称?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校对全体大一新生开展了一次有关“人工智能引领科技新发展”的学术讲座,随后对人工智能相关知识进行了一次测试(满分100分),如图所示是在甲、乙两个学院中各抽取的5名学生的成绩的茎叶图,由茎叶图可知,下列说法正确的是(

①甲、乙的中位数之和为159

②甲的平均成绩较低,方差较小;

③甲的平均成绩较低,方差较大;

④乙的平均成绩较高,方差较小;

⑤乙的平均成绩较高,方差较大.

A.①②④B.①③④C.①③⑤D.②⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处取得极值A,函数,其中是自然对数的底数.

1)求m的值,并判断A的最大值还是最小值;

2)求的单调区间;

3)证明:对于任意正整数n,不等式成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】年以来精准扶贫政策的落实,使我国扶贫工作有了新进展,贫困发生率由年底的下降到年底的,创造了人类减贫史上的的中国奇迹.“贫困发生率”是指低于贫困线的人口占全体人口的比例,年至年我国贫困发生率的数据如下表:

年份

2012

2013

2014

2015

2016

2017

2018

贫困发生率

10.2

8.5

7.2

5.7

4.5

3.1

1.4

(1)从表中所给的个贫困发生率数据中任选两个,求两个都低于的概率;

(2)设年份代码,利用线性回归方程,分析年至年贫困发生率与年份代码的相关情况,并预测年贫困发生率.

附:回归直线的斜率和截距的最小二乘估计公式分别为:

(的值保留到小数点后三位)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知圆,圆心,点E在直线上,点P满足,点P的轨迹为曲线M

1)求曲线M的方程.

2)过点N的直线l分别交M于点AB,交圆N于点CD(自上而下),若成等差数列,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】疫情期间,一同学通过网络平台听网课,在家坚持学习.某天上午安排了四节网课,分别是数学,语文,政治,地理,下午安排了三节,分别是英语,历史,体育.现在,他准备在上午下午的课程中各任选一节进行打卡,则选中的两节课中至少有一节文综学科(政治、历史、地理)课程的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABCD的底面是梯形.BCADABBCCD1AD2

(Ⅰ)证明;ACBP

(Ⅱ)求直线AD与平面APC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个顶点为,且焦距为,直线交椭圆两点(点与点不重合),且满足.

(1)求椭圆的标准方程;

(2)为坐标原点,若点满足,求直线的斜率的取值范围.

查看答案和解析>>

同步练习册答案