【题目】已知等差数列{an}满足 =1,公差d∈(﹣1,0),当且仅当n=9时,数列{an}的前n项和Sn取得最大值,则该数列首项a1的取值范围是( )
A.( , )
B.[ , ]
C.( , )
D.[ , ]
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在R上的偶函数,且在(﹣∞,0]上是增函数,设 ,c=f(0.20.6),则a,b,c的大小关系是( )
A.c<b<a
B.b<c<a
C.b<a<c
D.a<b<c
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆具有性质:若M,N是椭圆C: =1(a>b>0且a,b为常数)上关于y轴对称的两点,P是椭圆上的左顶点,且直线PM,PN的斜率都存在(记为kPM , kPN),则kPMkPN= .类比上述性质,可以得到双曲线的一个性质,并根据这个性质得:若M,N是双曲线C: =1(a>0,b>0)上关于y轴对称的两点,P是双曲线C的左顶点,直线PM,PN的斜率都存在(记为kPM , kPN),双曲线的离心率e= ,则kPMkPN等于 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知O为△ABC的外心,角A、B、C的对边分别为a、b、c.
(1)若5 +4 +3 = ,求cos∠BOC的值;
(2)若 = ,求 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}为等差数列,a1=2,{an}的前n项和为Sn , 数列{bn}为等比数列,且a1b1+a2b2+a3b3+…+anbn=(n﹣1)2n+2+4对任意的n∈N*恒成立.
(1)求数列{an}、{bn}的通项公式;
(2)是否存在非零整数λ,使不等式sin < 对一切n∈N*都成立?若存在,求出λ的值;若不存在,说明理由.
(3)各项均为正整数的无穷等差数列{cn},满足c39=a1007 , 且存在正整数k,使c1 , c39 , ck成等比数列,若数列{cn}的公差为d,求d的所有可能取值之和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax﹣lnx(a∈R).
(1)当a=1时,求f(x)的最小值;
(2)若存在x∈[1,3],使 +lnx=2成立,求a的取值范围;
(3)若对任意的x∈[1,+∞),有f(x)≥f( )成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),a>0,且a≠1. (Ⅰ)若3是关于x的方程f(x)﹣g(x)=0的一个解,求t的值;
(Ⅱ)当0<a<1且t=1时,解不等式f(x)≤g(x);
(Ⅲ)若函数F(x)=af(x)+tx2﹣2t+1在区间(﹣1,3]上有零点,求t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列向量组中能作为表示它们所在平面内所有向量的基底的是( )
A. =(0,0), =(1,﹣2)
B. =(﹣1,2), =(2,﹣4)
C. =(3,5), =(6,10)
D. =(2,﹣3), =(6,9)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙三人投篮的水平都比较稳定,若三人各自独立地进行一次投篮测试,则甲投中而乙不投中的概率为 ,乙投中而丙不投中的概率为 ,甲、丙两人都投中的概率为 .
(1)分别求甲、乙、丙三人各自投篮一次投中的概率;
(2)若丙连续投篮5次,求恰有2次投中的概率;
(3)若丙连续投篮3次,每次投篮,投中得2分,未投中得0分,在3次投篮中,若有2次连续投中,而另外1次未投中,则额外加1分;若3次全投中,则额外加3分,记ξ为丙连续投篮3次后的总得分,求ξ的分布列和期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com