精英家教网 > 高中数学 > 题目详情

在△ABC中,,其面积为,则     

 

【答案】

2

【解析】

试题分析:在△ABC中,,其面积为,所以,

∴S=bcsinA=c=,即c=2,

∴由余弦定理得:a2=b2+c2-2bccosA=1+4-2=3,

∴a=2.

考点:本题主要考查三角形面积公式,正弦定理、余弦定理的应用。

点评:中档题,本题综合考查三角形面积公式,正弦定理、余弦定理的应用。在解题过程中,注意分析已知条件,联想已有结论是解题的关键。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对应的边分别为a,b,c,若实数λ,μ满足a+b=λc,ab=μc2,则称数对(λ,μ)为△ABC的“Hold对”,现给出下列四个命题:
①若△ABC的“Hold对”为(2,1),则△ABC为正三角形;
②若△ABC的“Hold对”为(2,
8
9
)
,则△ABC为锐角三角形;
③若△ABC的“Hold对”为(
7
6
1
3
)
,则△ABC为钝角三角形;
④若△ABC是以C为直角顶点的直角三角形,则以“Hold对”(λ,μ)为坐标的点构成的图形是矩形,其面积为
2
-1
2

其中正确的命题是
①③
①③
(填上所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,BC=2,AB+AC=3,中线AD的长为y,AB的长为x,
(1)建立y与x的函数关系式,并指出其定义域.
(2)求y的最小值,并指出x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosωx,sinωx),
b
=(cosωx,
3
cosωx),其中(0<ω<2).函数f(x)=
a
b
-
1
2
,其图象的一条对称轴为x=
π
6

(1)求函数f(x)的表达式及单调递增区间;
(2)在△ABC中,a、b、c分别为角A、B、C的对边,S为其面积,若f(
A
2
)
=1,b=l,S△ABC=
3
,求BC边上的中线AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm现有两个动点P、Q分别从点A和点B同时出发,其中点P以1cm/s的速度,沿AC向终点C移动;点Q以1.25cm/s的速度沿BC向终点C移动.过点P作PE∥BC交AD于点E,连接EQ.设动点运动时间为x秒.
(1)用含x的代数式表示AE、DE的长度;
(2)当点Q在BD(不包括点B、D)上移动时,
设△EDQ的面积为y(cm2),求y与时间x的函数关系式,并写出自变量x的取值范围;
(3)当x为何值时,△EDQ为直角三角形.

查看答案和解析>>

同步练习册答案