精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx=Asin(ωx+)(A0,ω>0||)的部分图象如图所示.

(Ⅰ)求fx)的解析式;

(Ⅱ)若对于任意的x[0m]fx)≥1恒成立,求m的最大值.

【答案】III

【解析】

(Ⅰ)由图象可知,A2.可求函数的周期,利用周期公式可求ω的值,又函数fx)的图象经过点,可得,结合范围,可求,即可得解函数解析式;(Ⅱ)由x[0m],可得:,根据正弦函数的单调性,分类讨论即可得解m的最大值.

(Ⅰ)由图象可知,A=2.

因为

所以T=π.

所以.解得ω=2.

又因为函数fx)的图象经过点

所以

解得

又因为

所以

所以

(Ⅱ)因为 x∈[0,m],

所以

时,即时,fx)单调递增,

所以fx)≥f(0)=1,符合题意;

时,即时,fx)单调递减,

所以,符合题意;

时,即时,fx)单调递减,

所以,不符合题意;

综上,若对于任意的x∈[0,m],有fx)≥1恒成立,则必有

所以m的最大值是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数据是宜昌市个普通职工的年收入,设这个数据的中位数为,平均数为,方差为,如果再加上世界首富的年收入,则这个数据中,下列说法正确的是( )

A. 年收入平均数可能不变,中位数可能不变,方差可能不变

B. 年收入平均数大大增大,中位数可能不变,方差变大

C. 年收入平均数大大增大,中位数可能不变,方差也不变

D. 年收入平均数大大增大,中位数一定变大,方差可能不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】两城市相距,现计划在两城市外以为直径的半圆上选择一点建造垃圾处理场,其对城市的影响度与所选地点到城市的距离有关,对城和城的总影响度为城和城的影响度之和,记点到城的距离为,建在处的垃圾处理场对城和城的总影响度为,统计调查表明:垃圾处理场对城的影响度与所选地点到城的距离的平方成反比,比例系数为4,对城的影响度与所选地点到城的距离的平方成反比,比例系数为,当垃圾处理场建在的中点时,对城和城的总影响度为0.065

1)将表示成的函数;

2)判断上是否存在一点,使建在此处的垃圾处理场对城和城的总影响度最小?若存在,求出该点到城的距离;若不存在,说明理由;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x),若a,b,c∈R,f(a),f(b),f(c)为某一三角形的三边长,则称f(x)为“可构造三角形函数”.已知函数f(x)=是“可构造三角形函数”,则实数t的取值范围是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列五个命题:

R上的增函数的充分不必要条件;

②函数有两个零点;

③集合,从AB中各任意取一个数,则这两数之和等于4的概率是

④动圆C既与定圆相外切,又与y轴相切,则圆心C的轨迹方程是

⑤若对任意的正数x,不等式恒成立,则实数a的取值范围是.

其中正确的命题序号是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列{an}的前n项和为Sna2+a15=17S10=55.数列{bn}满足an=log2bn

1)求数列{bn}的通项公式;

2)若数列{an+bn}的前n项和Tn满足Tn=S32+18,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着改革开放的不断深入,祖国不断富强,人民的生活水平逐步提高,为了进一步改善民生,日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为元;(2)每月应纳税所得额(含税)收入个税起征点专项附加扣除;(3)专项附加扣除包括①赡养老人费用②子女教育费用③继续教育费用④大病医疗费用等,其中前两项的扣除标准为:①赡养老人费用:每月扣除元②子女教育费用:每个子女每月扣除

新个税政策的税率表部分内容如下:

级数

一级

二级

三级

四级

每月应纳税所得额(含税)

不超过元的部分

超过元至元的部分

超过元至元的部分

超过元至元的部分

税率

(1)现有李某月收入元,膝下有一名子女,需要赡养老人,(除此之外,无其它专项附加扣除)请问李某月应缴纳的个税金额为多少?

(2)现收集了某城市名年龄在岁到岁之间的公司白领的相关资料,通过整理资料可知,有一个孩子的有人,没有孩子的有人,有一个孩子的人中有人需要赡养老人,没有孩子的人中有人需要赡养老人,并且他们均不符合其它专项附加扣除(受统计的人中,任何两人均不在一个家庭).若他们的月收入均为元,试求在新个税政策下这名公司白领的月平均缴纳个税金额为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=2BC=2,点MDC的中点,将△ADM沿AM折起,使得平面△ADM⊥平面ABCM

1)求证:ADBM

2)求点C到平面BDM的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,四边形为矩形,均为等边三角形,

(1)过作截面与线段交于点,使得平面,试确定点的位置,并予以证明;

(2)在(1)的条件下,求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案