【题目】已知函数f(x)=Asin(ωx+)(A>0,ω>0,||<)的部分图象如图所示.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若对于任意的x∈[0,m],f(x)≥1恒成立,求m的最大值.
【答案】(I)(II)
【解析】
(Ⅰ)由图象可知,A=2.可求函数的周期,利用周期公式可求ω的值,又函数f(x)的图象经过点,可得,结合范围,可求,即可得解函数解析式;(Ⅱ)由x∈[0,m],可得:,根据正弦函数的单调性,分类讨论即可得解m的最大值.
(Ⅰ)由图象可知,A=2.
因为,
所以T=π.
所以.解得ω=2.
又因为函数f(x)的图象经过点,
所以.
解得.
又因为,
所以.
所以.
(Ⅱ)因为 x∈[0,m],
所以,
当时,即时,f(x)单调递增,
所以f(x)≥f(0)=1,符合题意;
当时,即时,f(x)单调递减,
所以,符合题意;
当时,即时,f(x)单调递减,
所以,不符合题意;
综上,若对于任意的x∈[0,m],有f(x)≥1恒成立,则必有,
所以m的最大值是.
科目:高中数学 来源: 题型:
【题目】已知数据是宜昌市个普通职工的年收入,设这个数据的中位数为,平均数为,方差为,如果再加上世界首富的年收入,则这个数据中,下列说法正确的是( )
A. 年收入平均数可能不变,中位数可能不变,方差可能不变
B. 年收入平均数大大增大,中位数可能不变,方差变大
C. 年收入平均数大大增大,中位数可能不变,方差也不变
D. 年收入平均数大大增大,中位数一定变大,方差可能不变
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】两城市和相距,现计划在两城市外以为直径的半圆上选择一点建造垃圾处理场,其对城市的影响度与所选地点到城市的距离有关,对城和城的总影响度为城和城的影响度之和,记点到城的距离为,建在处的垃圾处理场对城和城的总影响度为,统计调查表明:垃圾处理场对城的影响度与所选地点到城的距离的平方成反比,比例系数为4,对城的影响度与所选地点到城的距离的平方成反比,比例系数为,当垃圾处理场建在的中点时,对城和城的总影响度为0.065;
(1)将表示成的函数;
(2)判断上是否存在一点,使建在此处的垃圾处理场对城和城的总影响度最小?若存在,求出该点到城的距离;若不存在,说明理由;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数f(x),若a,b,c∈R,f(a),f(b),f(c)为某一三角形的三边长,则称f(x)为“可构造三角形函数”.已知函数f(x)=是“可构造三角形函数”,则实数t的取值范围是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列五个命题:
①“”是“为R上的增函数”的充分不必要条件;
②函数有两个零点;
③集合,,从A,B中各任意取一个数,则这两数之和等于4的概率是;
④动圆C既与定圆相外切,又与y轴相切,则圆心C的轨迹方程是;
⑤若对任意的正数x,不等式恒成立,则实数a的取值范围是.
其中正确的命题序号是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等差数列{an}的前n项和为Sn,a2+a15=17,S10=55.数列{bn}满足an=log2bn.
(1)求数列{bn}的通项公式;
(2)若数列{an+bn}的前n项和Tn满足Tn=S32+18,求n的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着改革开放的不断深入,祖国不断富强,人民的生活水平逐步提高,为了进一步改善民生,年月日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为元;(2)每月应纳税所得额(含税)收入个税起征点专项附加扣除;(3)专项附加扣除包括①赡养老人费用②子女教育费用③继续教育费用④大病医疗费用等,其中前两项的扣除标准为:①赡养老人费用:每月扣除元②子女教育费用:每个子女每月扣除元
新个税政策的税率表部分内容如下:
级数 | 一级 | 二级 | 三级 | 四级 | |
每月应纳税所得额(含税) | 不超过元的部分 | 超过元至元的部分 | 超过元至元的部分 | 超过元至元的部分 | |
税率 |
(1)现有李某月收入元,膝下有一名子女,需要赡养老人,(除此之外,无其它专项附加扣除)请问李某月应缴纳的个税金额为多少?
(2)现收集了某城市名年龄在岁到岁之间的公司白领的相关资料,通过整理资料可知,有一个孩子的有人,没有孩子的有人,有一个孩子的人中有人需要赡养老人,没有孩子的人中有人需要赡养老人,并且他们均不符合其它专项附加扣除(受统计的人中,任何两人均不在一个家庭).若他们的月收入均为元,试求在新个税政策下这名公司白领的月平均缴纳个税金额为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=2BC=2,点M为DC的中点,将△ADM沿AM折起,使得平面△ADM⊥平面ABCM.
(1)求证:AD⊥BM;
(2)求点C到平面BDM的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在多面体中,四边形为矩形,,均为等边三角形,,.
(1)过作截面与线段交于点,使得平面,试确定点的位置,并予以证明;
(2)在(1)的条件下,求直线与平面所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com