精英家教网 > 高中数学 > 题目详情
3.下列语句是真命题的是(  )
A.所有的实数x都能使x+$\frac{1}{x}$≥2成立
B.存在一个实数x使不等式x2-2x+3<0成立
C.如果x、y 是实数,那么“xy>0”是“|x+y|=|x|+|y|”的充分但不必要条件
D.命题甲:“a、b、c”成等差数列”是命题乙:“$\frac{a}{b}+\frac{c}{b}$=2”的充要条件

分析 A:x<0时,不成立
B:x2-2x+3=(x-1)2+2≥2,不会小于零
D:命题甲中b可以等于零;命题乙中b不等于零

解答 解:由xy>0得x,y同正或同负,
∴|x+y|=|x|+|y|,
当x=y=0时,|x+y|=|x|+|y|也成立,
“xy>0”是“|x+y|=|x|+|y|”的充分但不必要条件.
故选:C.

点评 此题可以用排除法,也可以直接做.两者结合相互检验更稳妥.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{1}{3}$x3+ax2+bx,且f′(-1)=0.
(1)试用含a的代数式表示b;
(2)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1(-c,0),F2(c,0),P为椭圆M上任意一点,且$\overrightarrow{P{F}_{1}}•\overrightarrow{P{F}_{2}}$的最大值的取值范围是[c2,3c2],其中c=$\sqrt{{a}^{2}-{b}^{2}}$,则该椭圆的离心率的取值范围为[$\frac{1}{2}$,$\frac{\sqrt{2}}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.给出下列四个结论,其中正确的是(  )
A.若$\frac{1}{a}>\frac{1}{b}$,则a<b
B.“a=3“是“直线l1:a2x+3y-1=0与直线l2:x-3y+2=0垂直”的充要条件
C.在区间[0,1]上随机取一个数x,sin$\frac{π}{2}x$的值介于0到$\frac{1}{2}$之间的概率是$\frac{1}{3}$
D.对于命题P:?x∈R使得x2+x+1<0,则?P:?x∈R均有x2+x+1>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在某公园有一中年人手拿一个黑色小布袋,袋中装有3只黄色和3只白色的乒乓球(其体积、质地完全相同),吆喝着“摸球送钱”,在他旁边立着一块小黑板写道:摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱.
(Ⅰ)摸出的3个球为白球的概率是多少?
(Ⅱ)摸出的3个球为1个黄球2个白球的概率是多少?
(Ⅲ)“摸球送钱”其实是一种谎言.假定一天中有100人次参加摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少黑心钱?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在直角坐标系xOy中,以原点O为极点,以x轴为正半轴为极轴建立极坐标系.
(1)求曲线ρ=cosθ+1与ρcosθ=1的公共点到极点的距离;
(2)椭圆C的参数方程为$\left\{\begin{array}{l}{x=acosθ}\\{y=bsinθ}\end{array}\right.$(φ为参数,a>b>0),直线l与圆O的极坐标方程分别为ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$m(m为非零常数)与ρ=b,若直线l经过椭圆C的焦点,且与圆O相切,求椭圆C的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某一几何体的三视图如图所示,按照给出的尺寸(单位:cm),则这个几何体的体积为(  )
A.8cm3B.$\frac{40}{3}$cm3C.12cm3D.$\frac{50}{3}$cm3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=x3+x,x∈R,当-$\frac{π}{2}$<θ≤0时,f(mcosθ)+f(1-m)>0恒成立,则实数m的取值范围是(-∞,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知命题p:关于x的方程a2x2-ax-2=0在x∈[-1,1]上有解;命题q:只有一个实数x满足不等式x2+2ax+2a≤0.
(1)若“p且q”是真命题,求实数a的取值范围;
(2)若“p或q”是假命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案