精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线 ,其焦点到准线的距离为2,直线与抛物线交于两点,过分别作抛物线的切线交于点.

(Ⅰ)求的值;

(Ⅱ)若,求面积的最小值.

【答案】(Ⅰ) (Ⅱ) 最小值4.

【解析】

(Ⅰ)根据抛物线的性质即可得到结果;(Ⅱ)由直线垂直可构造出斜率关系,得到,通过直线与抛物线方程联立,根据根与系数关系求得;联立两切线方程,可用表示出,代入点到直线距离公式,从而得到关于面积的函数关系式,求得所求最值.

(Ⅰ)由题意知,抛物线焦点为:,准线方程为:

焦点到准线的距离为,即.

(Ⅱ)抛物线的方程为,即,所以

由于,所以,即

设直线方程为,与抛物线方程联立,得

所以

,所以

联立方程得:,即:

点到直线的距离

所以

时,面积取得最小值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线 的焦点为,圆 ,过作垂直于轴的直线交抛物线两点,且的面积为.

(1)求抛物线的方程和圆的方程;

(2)若直线均过坐标原点,且互相垂直, 交抛物线,交圆 交抛物线,交圆,求的面积比的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱台中,M的中点,N在线段上,且,过点的平面把这个棱台分为两部分,求体积较小部分与体积较大部分的体积比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且过点.

I)求椭圆的标准方程;

II)四边形ABCD的顶点在椭圆上,且对角线ACBD过原点O,设,满足.

i)试证的值为定值,并求出此定值;

ii)试求四边形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),其中.以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线的极坐标方程为.

1)求的直角坐标方程;

2)已知点交于点,与交于两点,且,求的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某新上市的电子产品举行为期一个星期(7天)的促销活动,规定购买该电子产品可免费赠送礼品一份,随着促销活动的有效开展,第五天工作人员对前五天中参加活动的人数进行统计,y表示第x天参加该活动的人数,得到统计表格如下,经计算得.

x

1

2

3

4

5

y

4

m

10

23

22

1)若yx具有线性相关关系,请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程

2)预测该星期最后一天参加该活动的人数(按四舍五入取到整数).

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在圆柱中,点分别为上、下底面的圆心,平面是轴截面,点在上底面圆周上(异于),点为下底面圆弧的中点,点与点在平面的同侧,圆柱的底面半径为1,高为2.

(1)若平面平面,证明:

(2)若直线与平面所成线面角的正弦值等于,证明:平面与平面所成锐二面角的平面角大于.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ),解不等式;

(Ⅱ),对任意都有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,直线被圆截得的弦长为.

(1)求椭圆的方程;

(2)过点的直线交椭圆两点,在轴上是否存在定点,使得为定值?若存在,求出点的坐标和的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案