【题目】已知数列{an}的前n项和为Sn , 且满足an+Sn=2.
(1)求数列{an}的通项公式;
(2)求证数列{an}中不存在三项按原来顺序成等差数列.
【答案】
(1)解:当n=1时,a1+S1=2a1=2,则a1=1.
又an+Sn=2,所以an+1+Sn+1=2,两式相减得an+1= an,
所以{an}是首项为1,公比为 的等比数列,
所以an=
(2)证明:假设存在三项按原来顺序成等差数列,记为ap+1,aq+1,ar+1(p<q<r,且p,q,r∈N*),则2 = + ,所以22r﹣q=2r﹣p+1.①
又因为p<q<r,所以r﹣q,r﹣p∈N*.
所以①式左边是偶数,右边是奇数,等式不成立,所以假设不成立,原命题得证
【解析】(1)由条件,再写一式,两式相减,可得{an}是首项为1,公比为 的等比数列,从而可求数列{an}的通项公式;(2)利用反证法,假设存在三项按原来顺序成等差数列,从而引出矛盾,即可得到结论.
【考点精析】利用等差关系的确定对题目进行判断即可得到答案,需要熟知如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,即-=d ,(n≥2,n∈N)那么这个数列就叫做等差数列.
科目:高中数学 来源: 题型:
【题目】在极坐标系中,圆的极坐标方程为,若以极点为原点,极轴所在的直线为轴建立平面直角坐标系.
(1)求圆的参数方程;
(2)在直线坐标系中,点是圆上的动点,试求的最大值,并求出此时点的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲正弦函数shx= 和双曲余弦函数chx= 与我们学过的正弦函数和余弦函数有许多类似的性质,请类比正弦函数和余弦函数的和角公式,写出双曲正弦或双曲余弦函数的一个类似的正确结论 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,已知长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=4,E是棱CC1上的点,且BE⊥B1C.
(1)求CE的长;
(2)求证:A1C⊥平面BED;
(3)求A1B与平面BDE夹角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=x2ex﹣1﹣ x3﹣x2(x∈R).
(1)求函数f(x)的单调区间;
(2)当x∈(1,+∞)时,用数学归纳法证明:n∈N* , ex﹣1> (其中n!=1×2×…×n).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下命题中,正确命题的序号是 . ①函数y=tanx在定义域内是增函数;
②函数y=2sin(2x+ )的图象关于x= 成轴对称;
③已知 =(3,4), =﹣2,则向量 在向量 的方向上的投影是﹣
④如果函数f(x)=ax2﹣2x﹣3在区间(﹣∞,4)上是单调递减的,则实数a的取值范围是(0, ].
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将边长为的等边沿轴正方向滚动,某时刻与坐标原点重合(如图),设顶点的轨迹方程是,关于函数有下列说法:
(1)的值域为;
(2)是周期函数且周期为;
(3);
(4)滚动后,当顶点第一次落在轴上时,的图象与轴所围成的面积为
其中正确命题的序号是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱中, , , 是的中点,△是等腰三角形, 为的中点, 为上一点;
(1)若∥平面,求;
(2)平面将三棱柱分成两个部分,求含有点的那部分体积;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com