【题目】若二面角α﹣L﹣β的大小为 ,此二面角的张口内有一点P到α、β的距离分别为1和2,则P点到棱l的距离是( )
A.
B.2
C.2
D.2
【答案】A
【解析】解:设过P,C,D的平面与l交于Q点.
由于PC⊥平面α,l平面M,则PC⊥l,
同理,有PD⊥l,∵PC∩PD=P,
∴l⊥面PCQD于Q.
又 DQ,CQ,PQ平面PCQD
∴DQ⊥l,CQ⊥l.
∴∠DQC是二面角α﹣l﹣β的平面角.
∴∠DQC=60°
且PQ⊥l,所以PQ是P到l的距离.
在平面图形PCQD中,有∠PDQ=∠PCQ=90°
∴P、C、Q、D四点共圆,也为△PDC的外接圆,且PQ是此圆的直径.
在△PCD中,∵PC=1,PD=2,∠CPD=180°﹣60°=120°,
由余弦定理得 CD2=1+4﹣2×1×2×(﹣ )=7,CD=
在△PDC 中,根据正弦定理 =2R=PQ,代入数据得出PQ= .
∴点P到直线l的距离为
故选:A.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AD∥BC,BC=2AD,PB⊥AC,Q是线段PB的中点.
(Ⅰ)求证:AB⊥平面PAC;
(Ⅱ)求证:AQ∥平面PCD.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥P﹣ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1,BC=2,又PB⊥平面ABCD,且PB=1,点E在棱PD上,且BE⊥PD.
(1)求异面直线PA与CD所成的角的大小;
(2)求证:BE⊥平面PCD;
(3)求二面角A﹣PD﹣B的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知圆G:x2﹣x+y2=0,经过抛物线y2=2px的焦点,过点(m,0)(m<0)倾斜角为 的直线l交抛物线于C,D两点. (Ⅰ)求抛物线的方程;
(Ⅱ)若焦点F在以线段CD为直径的圆E的外部,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数g(x)= 是奇函数,f(x)=log4(4x+1)﹣mx是偶函数.
(1)求m+n的值;
(2)设h(x)=f(x)+ x,若g(x)>h[log4(2a+1)]对任意x≥1恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD是正方形,△PAB与△PAD均是以A为直角顶点的等腰直角三角形,点F是PB的中点,点E是边BC上的任意一点.
(1)求证:AF⊥EF;
(2)求二面角A﹣PC﹣B的平面角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是边长为1的菱形,∠BAD=60°,侧棱PA⊥底面ABCD,E、F分别是PA、PC的中点.
(Ⅰ)证明:PA∥平面FBD;
(Ⅱ)若PA=1,在棱PC上是否存在一点M使得二面角E﹣BD﹣M的大小为60°.若存在,求出PM的长,不存在请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com