精英家教网 > 高中数学 > 题目详情

已知
(1)设,求函数的图像在处的切线方程;
(2)求证:对任意的恒成立;
(3)若,且,求证:

(1);(2)详见解析;(3)详见解析.

解析试题分析:(1)先求导函数,由导数的几何意义知,切线斜率为,利用直线的点斜式方程可求;(2)构造函数,只需证明函数的最小值大于等于0即可,先求导得,,因导数等于0的根不易求出,再求导得,,可判断,故递增,且,故单调递减,在单调递增 ∴得证;(3)结合已知条件或已经得到的结论,得证明或判断的条件,是构造法求解问题的关键,由(2)知,依次将代数式放大,围绕目标从而证明不等式.
试题解析:(1),则 ,∴图像在处的切线方程为    3分
(2)令          4分

同号 ∴ ∴
 ∴单调递增                                 6分
,∴当时,;当时,
单调递减,在单调递增 ∴
 即对任意的恒成立                     8分
(3)由(2)知                                                9分
           
                       11分
由柯西不等式得
                                    13分
同理  
三个不等式相加即得证。                              &

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax3+(a-2)x+c的图象如图所示.

(1)求函数y=f(x)的解析式;
(2)若g(x)=-2ln x在其定义域内为增函数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数图象与直线相切,切点横坐标为.
(1)求函数的表达式和直线的方程;(2)求函数的单调区间;
(3)若不等式定义域内的任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求在点(1,0)处的切线方程;
(2)判断在区间上的单调性;
(3)证明:上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数其中a是实数.设为该函数图象上的两点,且
(1)指出函数f(x)的单调区间;
(2)若函数f(x)的图象在点A,B处的切线互相垂直,且,求的最小值;
(3)若函数f(x)的图象在点A,B处的切线重合,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,讨论函数在区间上的单调性;
(2)若且对任意的,都有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某厂生产产品x件的总成本(万元),已知产品单价P(万元)与产品件数x满足:,生产100件这样的产品单价为50万元,产量定为多少件时总利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数上是单调递减函数,
方程无实根,若“”为真,“”为假,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,().
(1)若有最值,求实数的取值范围;
(2)当时,若存在,使得曲线处的切线互相平行,求证:.

查看答案和解析>>

同步练习册答案