精英家教网 > 高中数学 > 题目详情
如图,四棱锥的底面是正方形,,点在棱上.

(1)求证:平面平面
(2)当,且时,确定点的位置,即求出的值.
(3)在(2)的条件下若F是PD的靠近P的一个三等分点,求二面角A-EF-D的余弦值.
(1)详见解析;(2) ;(3).

试题分析:(1)证面面垂直,先证明线面垂直.那么证哪条线垂直哪个面?因为ABCD是正方形, .又由平面可得,所以可证平面,从而使问题得证.
(2)设AC交BD=O.由(1)可得平面,所以即为三棱锥的高.由条件易得.
因为,所以可求出底面的面积.又因为PD=2,所以可求出点E到边PD的距离,从而可确定点E的位置.
(3)在本题中作二面角的平面角较麻烦,故考虑建立空间直角坐标系,然后用空间向量求解.
试题解析:(1)证明:四边形ABCD是正方形ABCD,.
平面,平面,所以.
,所以平面.
因为平面,所以平面平面.
(2) 设.,.

在直角三角形ADB中,DB=PD=2,则PB=
中斜边PB的高h=

即E为PB的中点.
(3) 连接OE,因为E为PB的中点,所以平面.以O为坐标原点,OC为x轴,OB为y轴,OE为z轴,建立空间直角坐标系.
则A(1,0,0),  E(0,0,1) ,F(0,-1,) , D(0,-1,0).
平面EFD的法向量为
为面AEF的法向量。

令y=1,则

所以二面角A-EF-D的余弦值为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥P-ABCD的底面为直角梯形,AD∥BC,∠BCD=900,PA=PB,PC=PD.

(I) 试判断直线CD与平面PAD是否垂直,并简述理由;
(II)求证:平面PAB⊥平面ABCD;
(III)如果CD=AD+BC,二面角P-CB-A等于600,求二面角P-CD-A的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱中,

(Ⅰ)求证:平面
(Ⅱ)若的中点,求与平面所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱中,为的中点.

(1)求证:∥平面
(2)求证:平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在梯形中,,,平面平面,四边形是矩形,,点在线段EF上.

(1)求异面直线所成的角;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中,的中点,分别在线段上的动点,且,把沿折起,如下图所示,

(Ⅰ)求证:平面
(Ⅱ)当二面角为直二面角时,是否存在点,使得直线与平面所成的角为,若存在求的长,若不存在说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱中,,点分别为的中点.

(1)证明:平面
(2)求所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(如图,在四棱锥P﹣ABCD中,底面是边长为2的菱形,∠BAD=60°,对角线AC与BD相交于点O,PO为四棱锥P﹣ABCD的高,且,E、F分别是BC、AP的中点.

(1)求证:EF∥平面PCD;
(2)求三棱锥F﹣PCD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,,平面底面中点,M是棱PC上的点,

(1)若点M是棱PC的中点,求证:平面
(2)求证:平面底面
(3)若二面角M-BQ-C为,设PM=tMC,试确定t的值.

查看答案和解析>>

同步练习册答案