精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=cos(2x+φ),|φ|≤ ,若f( ﹣x)=﹣f(x),则要得到y=sin2x的图象只需将y=f(x)的图象(
A.向左平移 个单位
B.向右平移 个单位
C.向左平移 个单位
D.向右平移 个单位

【答案】B
【解析】解:函数f(x)=cos(2x+φ),|φ|≤ ,由
可得cos[2( ﹣x)+φ]=﹣cos(2x+φ),
整理得:cos( φ)=﹣cos(2x+φ)=cos(π﹣(2x+φ]
∵φ|≤
∴令 φ=π﹣(2x+φ)
解得:φ=
故函数f(x)=cos(2x )=sin(2x + )=sin(2x+ )=sin2(x+
向右平移 个单位可得到sin2x.
故选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设m,n(3≤m≤n)是正整数,数列Am:a1 , a2 , …,am , 其中ai(1≤i≤m)是集合{1,2,3,…,n}中互不相同的元素.若数列Am满足:只要存在i,j(1≤i<j≤m)使ai+aj≤n,总存在k(1≤k≤m)有ai+aj=ak , 则称数列Am是“好数列”. (Ⅰ)当m=6,n=100时,
(ⅰ)若数列A6:11,78,x,y,97,90是一个“好数列”,试写出x,y的值,并判断数列:11,78,90,x,97,y是否是一个“好数列”?
(ⅱ)若数列A6:11,78,a,b,c,d是“好数列”,且a<b<c<d,求a,b,c,d共有多少种不同的取值?
(Ⅱ)若数列Am是“好数列”,且m是偶数,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的不等式ex﹣(a+1)x﹣b≥0(e为自然对数的底数)在R上恒成立,则(a+1)b的最大值为(
A.e+1
B.e+
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣alnx(a∈R)
(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;
(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:函数f(x)=lg(ax2﹣ax+1)的定义域是R;命题 在第一象限为增函数,若“p∧q”为假,“p∨q”为真,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sinωx,其中常数ω>0.
(Ⅰ)令ω=1,求函数 上的最大值;
(Ⅱ)若函数 的周期为π,求函数g(x)的单调递增区间,并直接写出g(x)在 的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x,y∈[0,π],则cos(x+y)+cosx+2cosy的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn , 且a1=10,S5≥S6 , 下列四个命题中,假命题是(
A.公差d的最大值为﹣2
B.S7<0
C.记Sn的最大值为K,K的最大值为30
D.a2016>a2017

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥P﹣ABCD中,PD⊥面ABCD,底面ABCD是菱形,且PD=DA=2,∠CDA=60°,过点B作直线l∥PD,Q为直线l上一动点.
(1)求证:QP⊥AC;
(2)当二面角Q﹣AC﹣P的大小为120°时,求QB的长;
(3)在(2)的条件下,求三棱锥Q﹣ACP的体积.

查看答案和解析>>

同步练习册答案